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An inverse eigenvalue problem concerns the reconstruction of a structured
matrix from prescribed spectral data. Such an inverse problem arises in many
applications where parameters of a certain physical system are to be deter-
mined from the knowledge or expectation of its dynamical behaviour. Spectral
information is entailed because the dynamical behaviour is often governed by
the underlying natural frequencies and normal modes. Structural stipulation
is designated because the physical system is often subject to some feasibility
constraints. The spectral data involved may consist of complete or only partial
information on eigenvalues or eigenvectors. The structure embodied by the
matrices can take many forms. The objective of an inverse eigenvalue problem
is to construct a matrix that maintains both the specific structure as well as
the given spectral property. In this expository paper the emphasis is to provide
an overview of the vast scope of this intriguing problem, treating some of its
many applications, its mathematical properties, and a variety of numerical
techniques.
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1. Introduction

In his book Finite-Dimensional Vector Spaces, Halmos (1974) wrote:

Almost every combination of the adjectives proper, latent, characteristic, eigen and
secular, with the nouns root, number and value, has been used in the literature for
what we call a proper value.

This interesting comment on the nomenclature of eigenvalue echoes the en-
igmatic yet important role that eigenvalues play in nature. One instance,
according to Parlett (1998), is that ‘Vibrations are everywhere, and so too
are the eigenvalues associated with them.’ For that reason, considerable
research effort has been expended on eigenvalue computation, especially in
the context of matrices. The applications of this research furnish critical
insight into the understanding of many vital physical systems.

The process of analysing and deriving the spectral information and, hence,
inferring the dynamical behaviour of a system from a priori known physical
parameters such as mass, length, elasticity, inductance, capacitance, and
so on is referred to as a direct problem. The inverse problem then is to
validate, determine, or estimate the parameters of the system according to
its observed or expected behaviour. Specifically, in the context of matrices
again, an inverse eigenvalue problem (IEP) concerns the reconstruction of
a matrix from prescribed spectral data.

It is clear that the IEP could trivially be solved if the matrices were
subject to no restriction on structure. For the problem to be more signific-
ant, either physically or mathematically, it is often necessary to confine the
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construction to certain special classes of matrices. Matrices with a specified
structure, for example, constitute a special class. Thus an IEP is indeed
a structured IEP (SIEP). The solution to an IEP should satisfy two con-
straints: the spectral constraint, referring to the prescribed spectral data,
and the structural constraint, referring to the desirable structure. The vari-
ation of these constraints defines the variety of IEPs, some of which will be
surveyed in this paper.

More should be said about these constraints in order to define an IEP.
First we recall one condition under which two geometric entities intersect
transversally. Loosely speaking, we may assume that the structural con-
straint and the spectral constraint define, respectively, smooth manifolds in
the space of matrices of a fixed size. If the sum of the dimensions of these
two manifolds exceeds the dimension of the ambient space, then under some
mild conditions one can argue that the two manifolds must intersect and the
IEP must have a solution. A more challenging situation is when the sum of
dimensions emerging from both structural and spectral constraints does not
add up to the transversal property. In that case, it is much harder to tell
whether or not an IEP is solvable. Secondly we note that in a complicated
physical system it is not always possible to know the entire spectrum. On
the other hand, especially in structural design, it is often demanded that cer-
tain eigenvectors should also satisfy some specific conditions. The spectral
constraints involved in an IEP, therefore, may consist of complete or only
partial information on eigenvalues or eigenvectors. We further observe that,
in practice, it may occur that one of the two constraints in an IEP should
be enforced more critically than the other, due to the physical realizability,
say. Without this, the physical system simply cannot be built. There are
also situations when one constraint could be more relaxed than the other,
due to the physical uncertainty, say. The uncertainty arises when there is
simply no accurate way to measure the spectrum, or no reasonable means
to obtain all the information. When the two constraints cannot be satisfied
simultaneously, the IEP could be formulated in a least squares setting, in
which a decision is made as to which constraint could be compromised.

Associated with any IEP are four fundamental questions. These are issues
concerning:

• the theory of solvability,
• the practice of computability,
• the analysis of sensitivity, and
• the reality of applicability.

A major effort in solvability has been to determine a necessary or a suffi-
cient condition under which an inverse eigenvalue problem has a solution.
The main concern in computability, on the other hand, has been to develop
a procedure by which, knowing a priori that the given spectral data are
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feasible, a matrix can be constructed in a numerically stable fashion. The
discussion on sensitivity concerns how the solution to an IEP is modified by
changes in the spectral data. The applicability is a matter of differentiation
between whether the given data are exact or approximate, complete or in-
complete, and whether an exact value or only an estimate of the parameters
of the physical system is needed. Each of these four questions is essential
but challenging to the understanding of a given IEP. We are not aware of
many IEPs that are comprehensively understood in all these four aspects.
Rather, considerably more work remains to be done. For the very same
reason, we cannot possibly treat each IEP evenly in this article.

With different emphases and different formulations, studies of IEPs have
been intensive and scattered, ranging from acquiring a pragmatic solution
to a real-world application to discussing the general theory of an abstract
formulation. A timely review that better defines the realm of IEPs as a
whole is critical for further research and understanding. Earlier endeavours
in this regard include the book by Gladwell (1986b), where the emphasis
was on applied mechanics, the survey by Boley and Golub (1987), where
the emphasis was on numerical computation, the book by Zhou and Dai
(1991), which pointed to many publications in Chinese that were perhaps
unknown to the West, and the article by Gladwell (1996), which reviewed
activities and literature between 1985 and 1995 as a ten-year update of his
previous book. In a recent review article, Chu (1998) briefly described a
collection of thirty-nine IEPs. These problems were categorized roughly ac-
cording to their characteristics into three types of IEPs, i.e., parametrized

(PIEP), structured (SIEP), and partially described (PDIEP). Since then,
many more old results have been unearthed, while new articles have con-
tinued to appear, notably the treatise by Ikramov and Chugunov (2000),
translated from Russian with the emphasis on finitely solvable IEPs and
rational algorithms, and the book by Xu (1998), where many results on the
sensitivity issue by Chinese mathematicians are made known in English for
the first time. It quickly becomes clear that even for SIEPs alone there is
a need to update history and describe recent developments in both theory
and application. It is for this purpose that this paper is presented.

Although every IEP should be regarded as an SIEP, that view is certainly
too broad to be apprehended by a paper of finite length. Thus, our definition
of ‘structure’ is limited to those structures delineated in this paper. Some of
these structures, such as Jacobi or Toeplitz, result in matrices forming linear
subspaces; some structures, such as nonnegative or stochastic, limit entries of
matrices in a certain range; while others, such as matrices with prescribed
entries or with prescribed singular values, lead to some implicitly defined
structural constraints. We shall touch upon a variety of SIEPs by describing
their formulations, highlighting some theories or numerical procedures, and
suggesting some relevant references. Additionally, we shall outline some
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applications of IEPs from selected areas of disciplines. From time to time,
we shall point out some open questions. Let it be noted that, while we
sometimes seem to be concentrating on one particular numerical method
applied to one particular problem, often the method has enough generality
that, with some suitable modifications, it can also be applied to other types
of problems. We choose not to encumber readers with the details.

We hope that this presentation, along with previous treatments mentioned
above, will help to inspire some additional interest and to stimulate further
research that ultimately will lead to a better understanding of this fascinat-
ing subject of IEPs.

2. Applications

Inverse eigenvalue problems arise in a remarkable variety of applications.
The list includes, but is not limited to, control design, system identific-
ation, seismic tomography, principal component analysis, exploration and
remote sensing, antenna array processing, geophysics, molecular spectro-
scopy, particle physics, structural analysis, circuit theory, and mechanical
system simulation. In this section we briefly highlight a few applications
that, in our judgement, should be of general interest to the readers. So
as not to lose sight of the notion of an IEP, it is clear that we have to
sacrifice technical details in the description of these applications. We shall
divide the discussions into five categories: pole assignment problem, applied
mechanics, inverse Sturm–Liouville problem, applied physics, and numerical
analysis. Each category covers additional problems.

A common phenomenon that stands out in most of these applications is
that the physical parameters of the underlying system are to be reconstruc-
ted from knowledge of its dynamical behaviour. The dynamical behaviour
is affected by spectral properties in various ways. Vibrations depend on
natural frequencies and normal modes, stability controls depend on the loc-
ation of eigenvalues, and so on. If the physical parameters can be described
mathematically in the form of a matrix (as they often are), then we have
an IEP. The structure of the matrix is usually inherited from the physical
properties of the underlying system.

2.1. Pole assignment problem

Consider first the following dynamic state equation:

ẋ(t) = Ax(t) +Bu(t), (2.1)

where x(t) ∈ R
n denotes the state of a certain physical system to be con-

trolled by the input u(t) ∈ R
m. The two given matrices A ∈ R

n×n and
B ∈ R

n×m are invariant in time. One classical problem in control theory is
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to select the input u(t) so that the dynamics of the resulting x(t) is driven
into a certain desired state. Depending on how the input u(t) is calculated,
there are generally two types of controls, both of which have been extensively
studied and documented in the literature.

In the state feedback control, the input u(t) is selected as a linear function
of the current state x(t), that is,

u(t) = Fx(t). (2.2)

In this way, the system (2.1) is changed to a closed-loop dynamical system:

ẋ(t) = (A+BF )x(t). (2.3)

A general goal in such a control scheme is to choose the gain matrix F ∈
R
m×n so as to achieve stability and to speed up response. To accomplish

this goal, the problem can be translated into choosing F so as to reassign
eigenvalues of the matrix A+BF . This type of problem is usually referred
to in the literature as a (state feedback) pole assignment problem (PAP).
It should be pointed out that, in contrast to what we described earlier for
an IEP, the matrix F in the context of PAPs does not usually carry any
further structure at all. A PAP will become a much harder IEP if F needs
to satisfy a certain structural constraint.

It is often the case in practice that the state x(t) is not directly observable.
Instead, only the output y(t) that is related to x(t) via

y(t) = Cx(t) (2.4)

is available. In the above, C ∈ R
p×n is a known matrix. The input u(t) now

must be chosen as a linear function of the current output y(t), that is,

u(t) = Ky(t). (2.5)

The closed-loop dynamical system thus becomes

ẋ(t) = (A+BKC)x(t). (2.6)

The goal now is to select the output matrix K ∈ R
m×p so as to reassign the

eigenvalues of A + BKC. This output feedback PAP once again gives rise
to a special type of IEP (with no constraint on the structure of K).

There is a vast literature of research on the subject of PAPs alone. We
would suggest the papers by Byrnes (1989) and by Kautsky, Nichols and
Van Dooren (1985), which gave an excellent account of activities in this
area as a starting point for further exploration. We shall see later that
PAPs are a special case of what we call PIEPs in this article.

One important remark should be made at this point. PAPs, as well as
many other IEPs, usually have multiple solutions. Among these multiple
solutions, the one that is least sensitive to perturbations of problem data
is perhaps most critical from a practical point of view. Such a solution,
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termed the robust solution in the literature, is usually found by minimizing
the condition number associated with the solution. In other words, there are
two levels of work when solving an IEP for a robust solution: The first is to
develop a means to find a solution, if there is any at all; the second is to use
optimization techniques to minimize the condition number associated with
the solution. Most of the numerical methods discussed in this paper are for
the first task only. Except for PAPs (Kautsky et al. 1985), the second task
for general IEPs has not been fully explored as yet.

For the state feedback problem, there has also been some interest in the
case where K is structured. One such application is the so-called decent-

ralized dynamic system, where K is a diagonal matrix. Some background
information can be found in a recent paper by Ravi, Rosenthal and Wang
(1995). Numerical algorithms are needed for this type of structured prob-
lems.

2.2. Applied mechanics

Interpreting the word ‘vibration’ in a broad sense, we see applied mechanics
everywhere. The transverse motion of masses on a string, the buckling of
structures, the transient current of electric circuits, and the acoustic sound
in a tube are just a few instances of vibration. One of the basic problems
in classical vibration analysis is to determine the natural frequencies and
normal modes of the vibrating body. But inverse problems are concerned
with the construction of a model of a given type, for example, a mass-spring
system, a string, an IC circuit, and so on, with prescribed spectral data.
Such a reconstruction, if possible, would have practical value to applied
mechanics and structure design.

Consider the vibration of beads on a taut string illustrated in Figure 2.1.
Assume that the beads, each with mass mi, are placed along the string
with equal horizontal spacing h and are subject to a constant horizontal
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Figure 2.1. Vibration of beads on a string
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tension F . Then the equation of motion (for 4 beads) is given by:

m1
d2x1

dt2
= −F x1

h
+ F

x2 − x1

h
,

m2
d2x2

dt2
= −F x2 − x1

h
+ F

x3 − x2

h
,

m3
d2x3

dt2
= −F x3 − x2

h
+ F

x4 − x3

h
,

m4
d2x4

dt2
= −F x4 − x3

h
− F

x4

h
.

The equation of motion can easily be generalized to the case of n beads,
which can conveniently be described in matrix form,

d2x

dt2
= −DJ0x, (2.7)

where x = [x1, x2, . . . , xn]T , J0 is the Jacobi matrix

J0 =












2 −1 0
−1 2 −1

0 −1 2 . . . 0
...

. . .

0 2 −1
0 −1 2












, (2.8)

and D is the diagonal matrix D = diag(d1, d2, . . . , dn), with di = F
mih

. We

remark that the system (2.7) may also be thought of the method of lines
applied to the one-dimensional wave equation. Eigenvalues of the matrix
product DJ0 are precisely the squares of the so-called natural frequencies

of the system. An interesting inverse problem that is a special case of the
so-called multiplicative IEP (MIEP) concerns placing the weights mi, i =
1, . . . , n appropriately so that the resulting system has a prescribed set of
natural frequencies. An even more fundamental question related to the
solvability is whether such a string can have arbitrarily prescribed natural
frequencies by adjusting the diagonal matrix D and, if not, what are the
reachable frequencies.

More generally, the equation of motion arising in many mechanics applic-
ations appears as a linear second-order differential system:

M ẍ + Cẋ +Kx = f(x), (2.9)

where x ∈ R
n and M , C, K ∈ R

n×n. Usually, the mass matrix M is
diagonal, and both C and the stiffness matrix K are symmetric, positive
definite, and tridiagonal. It is known that the general solution to the homo-
geneous equation is a vital prerequisite for the stability of the subsequent
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dynamical behaviour. To that end, the fundamental solution can be derived
by proposing a solution of the form

x(t) = veµt.

Upon substitution, it turns out that v and µ are solutions to the quadratic
eigenvalue problem

(µ2M + µC +K)v = 0. (2.10)

Assuming the case that all eigenvalues are distinct, then a general solution
to the homogeneous system is given by the superposition principle, that is,

x(t) =
2n∑

k=1

αkvke
µkt,

where (µk,vk), k = 1, . . . , 2n, are the eigenpair solutions to (2.10).
In the undamped system, where C = 0, the quadratic eigenvalue problem

is reduced to the generalized eigenvalue problem,

(K − ω2M)v = 0, (2.11)

if we write λ = iω. In this case, ω is precisely the natural frequency of
the system and v is the corresponding natural mode. Let λ = ω2, J :=
M−1/2KM−1/2, and z = M1/2x. The generalized eigenvalue problem can
be further reduced to the Jacobi eigenvalue problem

Jz = λz. (2.12)

At this point, there are two ways to formulate IEPs in the above context.
First, note that the stiffness matrix K is normally more complicated than
the mass matrix M . The requirement of maintaining physical feasibility also
imposes constraints on the stiffness matrix, making it less flexible and more
difficult to construct. Thus, one usual way of forming an IEP is to have the
stiffness matrix K determined and fixed from the existing structure, that
is, the static constraints, and we want to find the mass matrix M in (2.11)
so that some desired natural frequencies are achieved. This inverse problem
is equivalent to the MIEP discussed earlier. An alternative formulation is
to construct an unreduced, symmetric, and tridiagonal matrix J from its
eigenvalues and the eigenvalues of its first leading principal submatrix. This
is a special case of the so-called Jacobi IEP (JIEP). In Section 4.2, we shall
illustrate that such an inverse problem can be identified as configuring a
mass-spring system from its spectrum and the spectrum of the same system
but with the last mass fixed to have no motion.

The inverse problem for a damped system is considerably more complic-
ated. Assuming that M is normalized to be the identity matrix, the analog-
ous problem to the JIEP for the damped system concerns the reconstruction
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of matrices C and K from the given spectral information of the damped sys-
tem. A particular formulation is given as SIEP6b in Section 4.1.

There are many other types of engineering applications for which an IEP
formulation could offer useful insight that, in turn, could lead to better
control of performance, safety, or effects of the system. A recent paper by
Tisseur and Meerbergen (2001) offers an excellent survey of quadratic eigen-
value problems and related applications. Applications of IEPs to structure
design problems can be found in Joseph (1992) as well as the conference
collection edited by Mottershead and Friswell (2001). By measuring the
changes in the natural frequencies, the IEP idea can be employed to detect
the size and location of a blockage in a duct or a crack in a beam. See
Wu (1990), Gladwell and Morassi (1999) and Gladwell (1996) for additional
references. Studies on IEPs with applications to mechanics are especially
flourishing. The research began in the former Soviet Union with the work
of M. G. Krĕın (1933). It first became known in the West through the (Ger-
man) translation of Gantmaher and Krĕın (1960). The book by Gladwell
(1986b) and his follow-up review (Gladwell 1996) cover a broad scope of prac-
tices and references of IEPs for small mechanical systems. Applications of
IEPs to model updating problems and fault detection problems for machine
and structure diagnostics are discussed by Starek and Inman (2001). Other
individual articles such as Barcilon (1979), Dai (1995), Gladwell (1984),
Gladwell and Gbadeyan (1985), Gladwell (1986a, 1997, 1999), Ram and
Caldwell (1992) and Ram and Gladwell (1994) represent some typical ap-
plications to vibrating rods and beams. A more comprehensive bibliography
can be found at our web site http://www4.ncsu.edu/~mtchu. Discussion
for higher-dimensional problems can be found in Barcilon (1990), Gladwell
and Zhu (1992), Knobel and McLaughlin (1994), McLaughlin, Polyakov and
Sacks (1994), McLaughlin and Hald (1995) and Zayed (1993). An important
extension of the Jacobi-type analysis to a tree-like system is given in Duarte
(1989).

2.3. Inverse Sturm–Liouville problems

Much of the discussion of IEPs in the literature has been due to an interest
in the inverse Sturm–Liouville problem. A classical regular Sturm–Liouville
problem concerns a differential equation of the form:

− d

dx

(

p(x)
du(x)

dx

)

+ q(x)u(x) = λu(x), a < x < b, (2.13)

where p(x) and q(x) are piecewise continuous on [a, b] and appropriate
boundary conditions are imposed. As a direct problem, it is known that
eigenvalues of the system (2.13) are real, simple, countable, and tend to
infinity. As an inverse problem, the question is to determine the potential
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function q(x) from eigenvalues. This inverse problem has generated much
interest in the field, for instance, Andrew (1994), Paine (1984) and Zhorn-
itskaya and Serov (1994), and notably the celebrated work by Gel′fand and
Levitan (1955) in which the fundamental fact that two data sequences are
required to uniquely determine a potential is settled. A quick introduction to
this subject can be found in Chadan, Colton, Päivärinta and Rundell (1997,
Chapter 3). A more thoroughgoing discussion was done in the translated
book by Levitan (1987).

When a numerical solution is sought, the Sturm–Liouville problem is dis-
cretized (Pryce 1993). Likewise, the inverse problem leads to a matrix ana-
logue IEP. Assuming that p(x) ≡ 1, [a, b] = [0, 1], and mesh size h = 1

n+1 ,
the differential equation (2.13) is reduced by the central difference scheme,
for instance, to the matrix eigenvalue problem

(

− 1

h2
J0 +X

)

u = λu, (2.14)

where J0 is given by (2.8) and X is the diagonal matrix representing the dis-
cretization of q(x). The inverse problem is to determine a diagonal matrix
X so that the matrix on the left side of (2.14) possesses a prescribed spec-
trum. This is a special case of the so-called additive IEP (AIEP). It should
be cautioned that there is a significant difference between the behaviour of
the discrete problem and that of the continuous case. See the discussion in
Hald (1972) and Osborne (1971). The matrix analogue IEP, such as (2.14),
however, is of interest in its own right.

We mention one application to geophysics. Assuming that the Earth has
spherical symmetry, geophysicists want to infer its internal structure from
the frequencies of spheroidal and torsional modes of oscillations. This leads
to the generalized Sturm–Liouville problem, that is,

u(2k) − (p1u
(k−1))(k−1) + · · · + (−1)kpku = λu.

Following the work of Gel′fand and Levitan (1955), Barcilon (1974a) sug-
gested that k + 1 spectra, associated with k + 1 distinct sets of boundary
conditions, must be present to construct the unknown coefficients p1, . . . , pk.
See also Barcilon (1974b). It is not clear how the matrix analogue for this
high-order problem should be formulated.

2.4. Applied physics

The IEP formulation can sometimes be used to explore and alleviate some
difficult computational problems in applied physics. We demonstrate two
applications in this section.

We first describe an application to quantum mechanics. In computing
the electronic structure of an atom, one usually expands the atom’s state
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vector over a convenient basis. The expansion coefficients are determined
by solving the eigenvalue problem for a Hamiltonian matrix H. It is known
that these expansion coefficients are sensitive to the diagonal elements of
H. Yet, in many cases of interest, the diagonal elements of H cannot be
determined to sufficient accuracy. On the other hand, eigenvalues of H
correspond to energy levels of an atom that can usually be measured to
a high degree of accuracy. The idea now is to use these measured energy
levels to correct diagonal elements. Furthermore, for practical purpose, all
matrices involved are required to be real. Under such a constraint, it is
almost always impossible to match the eigenvalues exactly. We therefore
formulate a least squares IEP (LSIEP) as follows (Deakin and Luke 1992).
Given a real symmetric matrix A and a set of real values ω = [ω1, . . . , ωn]T ,
find a real diagonal matrix D such that

‖σ(A+D) − ω‖2

is minimized. Throughout this paper, σ(M) denotes either the spectrum
(set) of the matrix M or the column vector formed by these eigenvalues: no
ambiguity should arise.

We next describe an application to neuron transport theory. One model
for the dynamics in an additive neural network is the differential equation

du

dt
= −Au + Ωg(u) + p, (2.15)

where A = diag(a1, . . . an) denotes the decaying factor, Ω = [ωij ] denotes
connection coefficients between the neurons, g(u) = [g1(u1), . . . , gn(un)]T

denotes the squashing function, in which each gi is strictly increasing but
bounded in ui, and p is a constant input. One of the design problems is,
given A, g, and p, to choose the connection matrix Ω so that a predestined
point u∗ ∈ R

n is a stable equilibrium. This requirement translates into two
conditions that must be satisfied simultaneously. First, the linear equation

−Au∗ + Ωg(u∗) + p = 0 (2.16)

must hold for Ω. Secondly, all eigenvalues of the Jacobian matrix,

Υ = −A+ ΩG(u∗), (2.17)

where G(u∗) = diag(g
′

1(u
∗), . . . g

′

n(u∗)), must lie in the left half-plane. Upon
rearranging the terms, it is easy to see that (2.16) can be rewritten as

Υx = y, (2.18)

where x = G−1(u∗)g(u∗) and y = Au∗ − AG−1(u∗)g(u∗) − p are known
vectors. This is a special case of the equality constrained IEP (ECIEP)
considered in Li (1997). Given two sets of real vectors {xi}pi=1 and {yi}pi=1
with p ≤ n, and a set of complex numbers {λ1, . . . , λn}, closed under
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conjugation, find a real matrix A such that Axi = yi, i = 1, . . . , p and
σ(A) = {λ1, . . . , λn}. A similar matrix approximation problem with lin-
early constrained singular values is discussed in Nievergelt (1997).

2.5. Numerical analysis

Finally, we point out that, even within the field of numerical analysis, the
notion of IEP helps to shed additional insight on numerical methods and
stabilize some numerical algorithms. We comment on four applications: pre-
conditioning, derivation of high-order stable Runge–Kutta schemes, Gaus-
sian quadrature, and low-rank approximations.

Recall first that one of the main ideas in preconditioning a linear equation
Ax = b is to transform the original system into an equivalent system that
is easier (quicker) to solve with an iterative scheme. The preconditioning of
a matrix A can be thought of as implicitly multiplying A by M−1, where
M is a matrix for which, hopefully, Mz = y can easily be solved, M−1A is
not too far from normal, and σ(M−1A) is clustered. This final hope, that
the eigenvalues of a preconditioned system M−1A should be clustered, is
a loose MIEP criterion. Although, in the context of preconditioning, the
locations of eigenvalues need not be exactly specified, the notion of MIEP
can certainly help to see what is to be expected of the ideal preconditioner.
Many types of unstructured preconditioners have been proposed, including
the low-order (coarse-grid) approximation, SOR, incomplete LU factoriza-
tion, polynomial, and so on. It would be interesting to develop another
category of preconditioners where the M is required to possess a certain
structure (Forsythe and Straus 1955, Greenbaum and Rodrigue 1989). A
related problem that has potential application to optimization is: Given a
matrix C ∈ R

m×n and a constant vector b ∈ R
m, find a vector x ∈ R

n such
that the rank-one updated matrix bxT +C has a prescribed set of singular
values.

Recall secondly that an s-stage Runge–Kutta method is uniquely determ-
ined by the Butcher array

c1 a11 a12 . . . a1s

c2 a21 a22 . . . a2s
...

...
...

cs as1 as2 . . . ass

b1 b2 . . . bs

Let A = [aij ], b = [b1, . . . , bs]
T and 1 = [1, . . . 1]T . It is well established that

the stability function for an s-state Runge–Kutta method is given by

R(z) = 1 + zbT (I − zA)−11
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(see, for example, Lambert (1991)). To attain numerical stability, implicit
methods are preferred. However, fully implicit methods are too expensive.
Diagonally implicit methods (DIRK), i.e., low triangular A with identical

diagonal entries, are computationally more efficient, but difficult to con-
struct. As an alternative, it is desirable to develop singly implicit methods
(SIRK) in which the matrix A does not need to be lower-triangular but
must have an s-fold eigenvalue. Such a consideration can be approached
by an IEP formulation with prescribed entries, as is done by Müller (1992).
Given the number s of stages and the desired order p of the method, define
k = ⌊(p−1)/2⌋ and constants ξj = 0.5(4j2−1)−1/2, j = 1, . . . , k. Find a real

number λ and Q ∈ R
(s−k)×(s−k) such that Q +QT is positive semi-definite

and σ(X) = {λ} where X ∈ R
s×s is of the form

X =













1/2 −ξ1
ξ1 0
0
...

. . .

0 −ξk

0 ξk Q













,

and q11 = 0 if p is even. Note that, in this formulation, the value of the
s-fold eigenvalue λ is one of the unknowns to be determined.

Recall thirdly that orthogonal polynomials play a crucial role in the de-
velopment of Gaussian quadrature rules. Given a weight function ω(x) ≥ 0
on [a, b], an n-point Gauss quadrature rule for the integral

If =

∫ b

a
ω(x)f(x) dx (2.19)

is a formula of the form

Gnf =
n∑

i=1

wif(λi), (2.20)

with selected nodes {λ1, . . . , λn} and weights {w1, . . . , wn} so that

Gnf = If (2.21)

for all polynomials f(x) of degree no higher than 2n−1. With respect to the
given ω(x), a sequence of orthonormal polynomials {pk(x)}∞k=0 satisfying

∫ b

a
ω(x)pi(x)pj(x) dx = δij (2.22)

can be defined. It is an established fact that the roots of each pk(x) are
simple, distinct, and lie in the interval [a, b]. Indeed, in order that the
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resulting quadrature should achieve the highest degree of precision 2n − 1,
the Gaussian nodes should be the roots {λi}ni=1 of pn(x). On the other hand,
it also known that, with p0(x) ≡ 1 and p−1(x) ≡ 0, orthogonal polynomials
satisfy a three-term recurrence relationship:

pn(x) = (anx+ bn)pn−1(x) − cnpn−2(x). (2.23)

Let p(x) = [p0(x), p1(x), . . . , pn−1(x)]
T . This relationship can be written in

matrix form as

xp(x) =













−b1
a1

1
a1

0 0
c2
a2

−b2
a2

1
a2

0
...

. . .
...

0 1
an−1

0 . . . cn
an

−bn
an













︸ ︷︷ ︸

T

p(x) +












0
0

...
0

1
an
pn(x)












. (2.24)

Observe that pn(λj) = 0 if and only if

λip(λi) = Tp(λi).

Note that the matrix T can be symmetrized by diagonal similarity trans-
formation into a Jacobi matrix J and that the weight wj in the quadrature
is given by

wi = q21i, i = 1, . . . , n,

where qi is the ith normalized eigenvector of J . This gives rise to an in-
teresting inverse problem. Given a quadrature with nodes {λ1, . . . , λn} and
weights {w1, . . . , wn} satisfying

∑n
i=1wi = 1, determine the corresponding

orthogonal polynomials (and the corresponding weight function ω(x); see
Kautsky and Elhay (1984), Ferguson (1980)). We illustrate one interesting
application to the derivation of the Gauss–Kronrod quadrature rule. Given
a Gaussian quadrature (2.20), the associated Gauss–Kronrod quadrature is
a (2n+ 1)-point integral rule

K2n+1f =
n∑

i=1

w̃if(λi) +
n+1∑

j=1

ŵjf(λ̂j) (2.25)

that is exact for all polynomials of degree at most 3n + 1. Note that the
original nodes {λ1, . . . , λn} form a subset of the new nodes in K2n+1. Based
on an interesting observation in Laurie (1997), the existence of a Gauss–
Kronrod quadrature rule with real distinct nodes and positive weights is
equivalent to the existence of a real solution to the following special IEP
with prescribed entries (PEIEP): determine an n×n symmetric tridiagonal
matrix with prescribed first n − 1 entries (counting row-wise in the upper-



16 Moody T. Chu and Gene H. Golub

triangular part) and prescribed eigenvalues {λ1, . . . , λn}. More details of
the computation can be found in the paper by Calvetti, Golub, Gragg and
Reichel (2000).

Finally, we note that the problem of low-rank approximation also belongs
to the realm of IEPs, considering that a section of the spectrum for the
desirable approximation is preset to zero. Low-rank approximation can be
used as a tool for noise removal in signal or image processing where the
underling matrix is structured as Toeplitz (Cadzow and Wilkes 1990, Suf-
fridge and Hayden 1993), covariance (Li, Stoica and Li 1999, Williams and
Johnson 1993), and so on. The rank to be removed corresponds to the noise
level where the signal to noise ratio (SNR) is low (Tufts and Shah 1993).
Low-rank approximation can also be used for model reduction problems in
speech encoding and filter design with Hankel structure, where the rank to
be restored is the number of sinusoidal components in the original signal
(Park, Zhang and Rosen 1999). The problem of finding or approximat-
ing the greatest common divisor (GCD) of multivariate polynomials can be
formulated as a low-rank approximation problem with Sylvester structure
whose rank is precisely the degree of the GCD (Corless, Gianni, Trager and
Watt 1995, Karmarkar and Lakshman 1998). The molecular structure mod-
elling for protein folding in R

3 involves Euclidean distance matrices whose
rank is no more than 5 (Glunt, Hayden, Hong and Wells 1990, Gower 1982).
In the factor analysis or latent semantic indexing (LSI) application, the low
rank is the number of principal factors capturing the random nature of the
indexing matrix (Horst 1965, Zha and Zhang 1999). All of these can be
considered as structured IEPs with partial spectrum identically zero.

We have seen from the above illustrations that different applications lead
to different IEP formulations. We conclude this section with one additional
remark by Gladwell (1996), who suggested that, for application purposes,
there should also be a distinction between determination and estimation

in the nature of an inverse problem. When the given data are exact and
complete, so that the system can be precisely determined, the IEP is said to
be essentially mathematical. In contrast, we say that we have an essentially

engineering IEP when the data are only approximate and often incomplete,
in which only an estimate of the parameters of the system is sought and
the resulting behaviour is expected to agree only approximately with the
prescribed data.

3. Nomenclature

For the ease of identifying the characteristics of various IEPs, we have sug-
gested using a unified name scheme *IEP# to categorize an IEP (Chu
1998). When singular values are involved in the spectral constraint, we
distinguish ISVPs from IEPs. Letter(s) ‘∗’ in front of IEP register the type
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Table 3.1. Summary of acronyms used in the paper

Acronym Meaning Reference

AIEP Additive IEP Section 9.3
ECIEP Equality Constrained IEP Page 12
ISEP Inverse Singular/Eigenvalue Problem Section 11
ISVP Inverse Singular Value Problem Section 10
JIEP Jacobi IEP Section 4
LSIEP Least Squares IEP Page 12
MIEP Multiplicative IEP Page 8
MVIEP Multi-Variate IEP
NIEP Nonnegative IEP Section 6
PAP Pole Assignment Problem Page 6
PEIEP IEP with Prescribed Entries Section 9
PIEP Parametrized IEP Page 51
PDIEP Partially Described IEP Page 25
RNIEP Real-valued Nonnegative IEP Page 39
SHIEP Schur–Horn IEP Page 47
SIEP Structured IEP Page 3
SNIEP Symmetric Nonnegative IEP Page 39
StIEP Stochastic IEP Section 7
STISVP Sing–Thompson ISVP Page 49
ToIEP Toeplitz IEP Section 5
UHIEP Unitary Hessenberg IEP Section 8

of problem. The numeral ‘#’ following IEP, if any, indicates the sequence
of variation within type ‘*IEP’. For convenience of later reference, we sum-
marize the acronyms appearing in this paper in Table 3.1. Also indicated
are the page numbers or the section numbers where the problems are first
described or where more detailed discussion can be found.

Figure 3.1 depicts a possible inclusion relationship between different prob-
lems. In particular, the diagram is intended to imply the following.

• Multivariate IEPs include univariate IEPs as a special case.

• All problems have a natural generalization to a least squares formula-
tion.

• The structural constraints involved in SIEPs can appear in various
forms, and hence define different IEPs.

• There is a counterpart ISVP corresponding to any structured IEP,
formed by replacing the eigenvalue constraint by a singular value con-
straint. Very little is known about these structured ISVPs (and hence
no diagrams).
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StIEP
SNIEP

RNIEP

UHIEPECIEP

AIEP

JIEP ToIEP

MIEP

PAP

SHIEP

PEIEP

PIEP

NIEP

SIEP

PDIEP

MVIEP

ISVP

STISVP

ISEP

LSIEP

Figure 3.1. Classification of inverse eigenvalue problems

• The class of PIEPs is considered to be a subset of general SIEPs, while
many classical IEPs are special cases of PIEPs.

• The relationship depicted in Figure 3.1 is not necessarily definitive
because many characteristics may overlap.

This classification along with review articles by Gladwell (1986c, 1996), who
differentiates problems according to the type of mechanical system, i.e., con-
tinuous or discrete, damped or undamped, and the type of prescribed data,
i.e., spectral, modal, or nodal, complete or incomplete, should complement
each other to offer a fairly broad view of research activities in this area.

This paper concentrates on the SIEP segment only. Even so, the form-
ations and algorithms differ noticeably from problem to problem. Indeed,
we pointed out earlier that every IEP should in fact be regarded as an
SIEP because of the presence of its structural constraint. That view is too
broad to be covered here. Instead, we shall focus on eight selected spe-
cial structures. These are the IEPs for Jacobi matrices, Toeplitz matrices,
nonnegative matrices, stochastic matrices, unitary matrices, matrices with
prescribed entries, matrices with prescribed singular values, and matrices
with prescribed singular values and eigenvalues. Our criteria of selection
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are simply that these eight problems are representative of a variety of struc-
tural constraints and are slightly better studied in the literature. We choose
not to include PAPs because that topic has been well considered in many
other places.

We shall consider these eight structured problems in slightly more breadth
and depth with regard to the four issues of solvability, computability, sens-
itivity, and applicability. Some main results, applications, and algorithmic
issues will also be presented.

4. Jacobi inverse eigenvalue problems

By a Jacobi structure, we mean a symmetric, tridiagonal matrix of the form

J =












a1 b1 0 0
b1 a2 b2 0
0 b2 a3 0
...

. . .

an−1 bn−1

0 bn−1 an












, (4.1)

with positive subdiagonal elements bi > 0. We have already seen that this
structure arises in many important areas of applications, including oscillat-
ory mass-spring systems, composite pendulum, and Sturm–Liouville prob-
lems. Eigenvalues of a Jacobi matrix are necessarily real and distinct. Since
J is characterized by the 2n − 1 unknown entries, {ai}ni=1 and {bj}n−1

j=1 , it
is intuitively true that 2n− 1 pieces of information are needed to solve the
inverse problems. That is, to fully describe a JIEP we need additional in-
formation other than just the spectrum of J . This additional information
comes from different sources and defines additional structures for JIEPs. We
shall survey a few JIEPs in this section. One unique and important feature
for JIEPs is that often the inverse problem can be solved by direct methods
in finitely many steps.

Jacobi matrices enjoy many nice properties. These properties make the
study of JIEPs more complete and fruitful than other IEPs. For that reason,
we shall provide somewhat more details on the theory and development
of JIEPs. We shall touch upon all four fundamental questions raised in
Section 1 for JIEPs. We hope that this exertion can serve as a study guide
for further developments of other IEPs in the future.

Before we move on, we should emphasize that the JIEPs under discussion
here are of tridiagonal structure only. The generalization to band matrices
is possible. Some initial studies of the IEP for band matrices can be found
in the paper by Biegler-König (1981a). Boley and Golub (1987) generalized
some of the numerical methods for JIEPs to the banded case. However,
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be aware that there are some fundamental differences in the generalization.
For instance, two sets of eigenvalues generally determine a tridiagonal matrix
uniquely (See Theorem 4.1 in Section 4.3), whereas three sets of eigenvalues
do not give a pentadiagonal matrix uniquely (and, in fact, sometimes there
is a continuum of solutions) (Boley and Golub 1987).

4.1. Variations

There are several variations in formulating a JIEP. Each formulation can be
associated with a mass-spring system. In this section, we only describe the
setup, a brief history and some relevant references on the original settings
for each problem. Topics on physical interpretation, mathematical theory,
and computational methods will be discussed in the next few sections.

In the following, Jk denotes the k× k principal submatrix of J , and Jn−1

is abbreviated as J̄ . Whenever possible, we refer to each variation by the
identification name used in Chu (1998).

SIEP6a. Given real scalars {λ1, . . . , λn} and {µ1, . . . , µn−1} satisfying the
interlacing property

λi < µi < λi+1, i = 1, . . . , n− 1, (4.2)

find a Jacobi matrix J such that
{

σ(J) = {λ1, . . . , λn},
σ(J̄) = {µ1, . . . , µn−1}.

This problem is perhaps the most fundamental and extensively studied
IEP in the literature. It appears that the problem was originally proposed
by Hochstadt (1967), although Downing and Householder (1956) had for-
mulated a more general inverse characteristic value problem much earlier.
Much of the existence theory and continuous dependence of the solution on
data were developed later in Hochstadt (1974), Gray and Wilson (1976), and
Hald (1976). Dangerously many numerical methods are available! Some are
stable and some are subtly unstable. We shall discuss some of these meth-
ods later. For the time being, it suffices to mention some important works
in this regard (Boley and Golub 1987, de Boor and Golub 1978, Erra and
Philippe 1997, Gragg and Harrod 1984, Hochstadt 1979, Parlett 1998).

SIEP2. Given real scalars {λ1, . . . , λn}, find a Jacobi matrix J such that






σ(J) = {λ1, . . . , λn},
ai = an+1−i,

bi = bn+2−i.
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Let Xi ∈ R
n×n denote the unit perdiagonal matrix where

ξij =

{

1, if i = n+ 1 − j,

0, otherwise.
(4.3)

A matrix M is said to be persymmetric if and only if ΞMΞ = MT . In
other words, the entries of M are symmetric with respect to the northeast-
to-southwest diagonal. A persymmetric Jacobi matrix involves only n inde-
pendent entries. The spectral constraint therefore requires spectrum in-
formation only. This problem was first considered in Hochstadt (1967)
and then in Hald (1976). Numerical methods for SIEP2 usually come
along with those for SIEP6a with appropriate modifications (de Boor and
Golub 1978, Parlett 1998).

SIEP7. Given real scalars {λ1, . . . , λn} and {µ1, . . . , µn−1} satisfying the
interlacing property

{

λi ≤ µi ≤ λi+1,

µi < µi+1,
i = 1, . . . , n− 1, (4.4)

and a positive number β, find a periodic Jacobi matrix J of the form

J =












a1 b1 bn
b1 a2 b2 0
0 b2 a3 0
...

. . .

an−1 bn−1

bn bn−1 an












such that






σ(J) = {λ1, . . . , λn},
σ(J̄) = {µ1, . . . , µn−1},
∏n

1 bi = β.

A periodic Jacobi matrix differs from a Jacobi matrix in that its eigenval-
ues need not be strictly separated. The interlacing property (4.4) therefore
differs from (4.2) in that equalities are allowed. The notion of periodic Jac-
obi matrices arise in applications such as periodic Toda lattices or continued
fractions (Adler, Haine and van Moerbeke 1993, Andrea and Berry 1992).
Spectral properties of the periodic Jacobi matrices were first analysed by
Ferguson (1980) using a discrete version of Floquet theory, but numerical
methods had been proposed earlier in Boley and Golub (1978). See also
discussions in Boley and Golub (1984, 1987).
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SIEP8. Given real scalars {λ1, . . . , λn} and {µ1, . . . , µn} satisfying the
interlacing property

λi < µi < λi+1, i = 1, . . . , n,

with λn+1 = ∞, find Jacobi matrices J and J̃ so that






σ(J) = {λ1, . . . , λn},
σ(J̃) = {µ1, . . . , µn},
J − J̃ 6= 0, only at the (n, n) position.

This problem originally appeared in de Boor and Golub (1978). Note that
J̃ is a special rank-one update of J . This problem is closely related to SIEP6a
in that the theory and numerical methods for SIEP6a will work almost
identically for SIEP8. A similar problem involving the preconditioning of
a matrix by a rank-one matrix was mentioned earlier in Section 2.5. An
application of rank-one updating involving the inverse quadratic eigenvalue
problem was discussed in Datta, Elhay and Ram (1997) and Ram (1995).

SIEP9. Given distinct real scalars {λ1, . . . , λ2n} and an n×n Jacobi matrix
J̃ , find a 2n× 2n Jacobi matrix J so that

{

σ(J) = {λ1, . . . , λ2n},
Jn = J̃ .

This problem, first discussed in Hochstadt (1979), corresponds exactly to
the problem of computing the Gaussian quadrature of order 2n that has de-
gree of precision 4n− 1, given the Gaussian quadrature of order n that has
degree of precision 2n − 1. Several numerical algorithms are available. See
Boley and Golub (1987). An IEP as such is actually a special case of a more
general category of IEPs with prescribed entries. The latter, in turn, is a sub-
set of so-called completion problems in the literature. The prescribed entries
need not be in a diagonal block as in SIEP9. An interesting question related
to the IEP is to find the largest permissible cardinality of the prescribed
entries so that the completed matrix has a prescribed spectrum. The first
publication devoted to this problem was probably due to London and Minc
(1972), followed by the series of work by de Oliveira (1973a, 1973b, 1975). A
most recent and comprehensive survey on this topic was given by Ikramov
and Chugunov (2000), who stated that the thesis by Hershkowits (1983)
contained the strongest result in this class of problems. Also presented in
Ikramov and Chugunov (2000) was a careful treatment showing how the
completion problems can be solved by finite rational algorithms. A similar
inverse problem for matrices with prescribed entries and characteristic poly-
nomial was considered by Dias da Silva (1974); for matrices with prescribed
characteristic polynomial and principal submatrices by Silva (1987a); and
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for matrices with prescribed spectrum and principal submatrices by Silva
(1987b).

SIEP6b. Given complex scalars {λ1, . . . , λ2n} and {µ1, . . . , µ2n−2}, distinct
and closed under complex conjugation, find tridiagonal symmetric matrices
C and K for the λ-matrix Q(λ) = λ2I + λC +K so that

{

σ(Q) = {λ1, . . . , λ2n},
σ(Q̄) = {µ1, . . . , µ2n−2}.

Clearly, SIEP6b is an analogy of SIEP6a applied to a damped system.
Strictly speaking, to maintain the physical feasibility a practical solution im-
poses additional conditions on K and C, that is, both matrices are supposed
to have positive diagonal entries, negative off-diagonal entries, and be weakly
diagonally dominant. The setup of SIEP6b, where two sets of eigenvalues
are given, was considered by Ram and Elhay (1996). Similar inverse prob-
lems with prescribed eigenvalues and eigenvectors were studied in a series of
works (Starek, Inman and Kress 1992, Starek and Inman 1997, Starek and
Inman 2001).

4.2. Physical interpretations

The JIEPs described above can be related to various physical systems, for
instance a vibrating beam or rod (Gladwell 1986b), a composite pendulum
(Hald 1976), or a string with beads (Hochstadt 1967). Correspondingly, the
quantities to be determined in a JIEP represent different physical paramet-
ers, for instance the stress, the mass, the length, and so on. In this section,
we shall use a serially linked, undamped mass-spring system with n particles
to demonstrate the physical interpretation of JIEPs. The physical system
is depicted in Figure 4.1.
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Figure 4.1. Mass-spring system

Suppose that the ith particle has mass mi, that the springs satisfy Hooke’s
law, and that the ith spring has spring constant ki. Let ui(t) denote the
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horizontal displacement of the ith particle at time t. Then it is easy to see
that the equation of motion is given by

m1
d2u1

dt
= −k1u1 + k2(u2 − u1),

mi
d2ui
dt

= −ki(ui − ui−1) + ki+1(ui+1 − ui), i = 2, . . . , n− 1,

mn
d2un
dt

= −kn(un − un−1).

In matrix form, we have

M
d2u

dt
= −Ku, (4.5)

where u = [u1, . . . , un]T , M = diag(m1, . . . ,mn), and K is the Jacobi matrix
given by

K =












k1 + k2 −k2 0 . . . 0 0
−k2 k2 + k3 −k3 0
0 −k3 k3 + k4 0
...

. . .
...

0 −kn
0 −kn kn












.

A fundamental solution of the form u(t) = eiωtv leads to the generalized ei-
genvalue problem (2.11). A transformation J = M−1/2KM−1, z = M1/2v,
and λ = ω2 leads to the Jacobi eigenvalue problem (2.12). The direct prob-
lem calculates the natural frequencies and modes of the mass-sprint system
from given values of mi and kk. The inverse problem requires calculating

quantities such as ki+ki+1

mi
and ki+1√

mimi+1
from the spectral data. Based on

this model, we make the following observations.
If the last mass mn is fastened to the floor, then the motion of mass mn−1

is governed by

mn−1
d2un−1

dt
= −kn−1(un−1 − un−2) + kn(−un−1),

instead. In matrix form the equation of motion for the first n− 1 particles
corresponds exactly to that of deleting the last row and the last column from
(4.5). Thus solving SIEP6a is equivalent to identifying the mass-spring sys-
tem in Figure 4.1 from its spectrum, and from the spectrum of the reduced
system where the last mass is held to have no motion. The recovery of the
spring stiffness and the masses from the matrix J is discussed in Gladwell
(1986b).
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Likewise, if another spring from mn is attached to a wall on the far right
side of the system, then the equation of motion for mn is modified to become

mn
d2un
dt

= −kn(un − un−1) + kn+1(−un).

SIEP2 corresponds to the construction of such a mass-spring system from
its spectrum if all parameters mi and ki are known a priori to be symmetric
with respect to the centre of the system.

It is a little bit more complicated to sketch a diagram for the physical
layout of SIEP7. Basically, we imagine that masses m1 and mn are somehow
connected by another spring mechanism so as to form a loop (such as the
periodic Toda lattice discussed in the literature). Any displacement in either
particle of m1 or mn will affect each other via that mechanism, contributing
nonzero but equal entries at the (1, n) and (n, 1) positions of K, respectively.
Apart from this extra connection, the meaning of SIEP7 is now the same as
that of SIEP6a.

We can also identify a mass system from its spectrum and from the spec-
trum of a new system by replacing the last mass and spring with new para-
meters m̃n and k̃n satisfying the relationship

k2
n

mn
=

k̃2
n

m̃n
.

The resulting inverse problem is precisely SIEP8.
The interpretation of SIEP9 is straightforward. It means completing the

construction of a mass-spring system of size 2n from its spectrum and from
existing physical parameters mi, ki of the first half of the particles.

Thus far, we have assumed that the system in Figure 4.1 has no friction.
For a damped system, the damping matrix C will be part of the parameters
and we shall face a quadratic eigenvalue problem (2.10). Other than this,
the physical interpretation for each of the JIEPs described above can be ex-
tended to damped systems. For example, SIEP6b is to identify the damped
system, including its damper configurations, from its spectrum and from the
spectrum of the reduced system where the last mass is held immobile. This
problem is still open. The principal difficulty is to find conditions on the
(complex) spectra which ensure a realistic solution.

It is important to point out that thus far we have considered using only
eigenvalues to construct Jacobi matrices. For large and complex systems, it
is often practically impossible to gather the entire spectrum information for
reconstruction. Partial information with some from eigenvalues and some
from eigenvectors can also be used to determine a Jacobi matrix. This type
of problem is referred to as PDIEP in Chu (1998) and is beyond the scope
of the present paper.

An interesting question related to PDIEPs is how much eigenvector in-
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formation is needed to determine such a Jacobi (or any structured) matrix.
Gladwell (1996) offered an account from engineering perspectives on why
using low-frequency normal modes is important in practice. Some discus-
sion can be found in the books by Zhou and Dai (1991) and Xu (1998).
Applications of inverse problems with given spectral and modal data were
studied in Gladwell (1986a), Starek et al. (1992), Starek and Inman (2001),
and the many references cited in the review paper by Gladwell (1996). A
number of interesting variants of JIEPs may be found in Nylen and Uhlig
(1997a, 1997b), and some corresponding damped problems in Nylen (1999),
Gladwell (2001) and Foltete, Gladwell and Lallement (2001).

4.3. Existence theory

Among all IEPs, the class of JIEPs probably enjoys the most satisfact-
ory solvability theory. Most of the existence proofs are based on a recur-
rence relationship among the characteristic polynomials. More precisely, let
pk(t) = det(tI−Jk) denote the characteristic polynomial of the leading k×k
principal submatrix Jk. Then

pk(t) = (t− ak)pk−1(t) − b2k−1pk−2(t), k = 2, . . . , n, (4.6)

if p0 ≡ 1. Such a recurrence relationship in fact gives rise to a constructive
proof that, in turn, can be implemented as a numerical algorithm. Because
there is an extensive literature in this regard, and because some of the
constructions will be discussed as numerical methods, we shall only state
the existence theorems without proof in this section.

Theorem 4.1. Suppose that all the given eigenvalues are distinct. Then:

(1) SIEP6a has a unique solution (Hald 1976);
(2) SIEP2 has a unique solution (Hald 1976);
(3) SIEP8 has a unique solution (de Boor and Golub 1978).

It should be noted that the MIEP (of uniformly spaced beads on a taut
string) described on page 8 is very different from the JIEPs described above
in several aspects. The former involves only one single spectrum; the latter
involves two spectra. In the former, we have only one set of parameters (the
masses) to adjust; in the latter, we have two sets (the mis and the kis) to
combine. The solution for the latter is often unique while the former is a
much harder problem.

Theorem 4.2. (Ram and Elhay 1996) Over the complex field C, sup-
pose that all the given eigenvalues are distinct. Then SIEP6b is solvable
and has at most 2n(2n − 3)!/(n − 2)! different solutions. In the event that
there are common eigenvalues, then there are infinitely many solutions for
SIEP6b.
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We stress that the solvability of SIEP6b established in the above theorem
is over the algebraically closed field C. It is not known whether the problem
is realistically solvable with positive masses, springs, and dampers (Gladwell
2001).

Theorem 4.3. (Xu 1998) SIEP7 is solvable if and only if

n∏

k=1

|µj − λk| ≥ 2β(1 + (−1)n−j+1),

for all j = 1, . . . , n− 1. Even in the case of existence, no uniqueness can be
ascertained.

It is worth mentioning that Ferguson (1980) characterized periodic Jacobi
matrices by a notion of ‘compatible’ data that can be turned into a numer-
ical algorithm. Each set of compatible data uniquely determines a periodic
Jacobi matrix. On the other hand, these sets of eigenvalues λ = {1, 3, 5}
and µ = {2, 4} with β = 1 server as a counterexample showing that SIEP7
is not solvable (Xu 1998).

Theorem 4.4. (Xu 1998) Assume that all eigenvalues are distinct. Define

∆k = det








1 . . . 1 1 . . . 1

λ1 . . . eT1 J̃e1 λk+1 . . . λ2n
...

...
...

...
...

...

λ2n−1
1 . . . eT1 J̃

2n−1e1 λ2n−1
k+1 . . . λ2n−1

2n







.

Then SIEP9 has a unique solution if and only if

∆k > 0

for all k = 1, . . . , 2n.

A simple counterexample showing that SIEP9 is not always solvable is as
follows. No 2 × 2 symmetric matrix J can have a fixed (1, 1) entry a1 and
eigenvalues satisfying either a1 < λ1 < λ2 or λ1 < λ2 < a1.

4.4. Sensitivity issues

If the numerical computation is to be done using finite precision arithmetic,
it is critical to understand the perturbation behaviour of the underlying
mathematical problem. The notion of conditioning is normally used as an
indication of the sensitivity dependence.

For IEPs, partly because inverse problems are, by nature, harder to ana-
lyse than direct problems, and partly because most IEPs have multiple solu-
tions, not many results on sensitivity analysis have been performed. We
believe that this is an important yet widely open area for further research.
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We mentioned earlier that such a study could have the application of finding
a robust solution that is least sensitive to perturbations. Despite the fact
that considerable effort has been devoted to the development of numerical
algorithms for many of the IEPs discussed in this article, we should make
it clear that thus far very little attention has been paid to this direction.
The analysis of either the conditioning of IEPs or the stability of the asso-
ciated numerical methods is lacking. For that reason, we can only partially
address the sensitivity issues by demonstrating known results for SIEP6a in
this section. Clearly, more work needs to be done.

For the direct problem, it is easy to see that the function F : R
n×R

n−1
+ −→

R
2n−1 where

F (a1, . . . , an, b1, . . . , bn−1) = (σ(J), σ(J̄))

is differentiable. The well-posedness of the inverse problem was initially
established by Hochstadt (1974).

Theorem 4.5. (Hochstadt 1974) The unique solution J to SIEP6a de-
pends continuously on the given data {λ1, . . . , λn} and {µ1, . . . , µn−1}.

Mere continuous dependence is not enough for numerical computation.
We need to quantify how the solution is perturbed by the change in prob-
lem data. Using the implicit function theorem, Hald (1976) refined this
dependence and provided the following sensitivity dependence.

Theorem 4.6. (Hald 1976) Suppose J and J̃ are the solutions to SIEP6a
with data

λ1 < µ1 < λ2 < · · · < µn−1 < λn,

λ̃1 < µ̃1 < λ̃2 < · · · < µ̃n−1 < λ̃n,

respectively. Then there exists a constant K such that

‖J − J̃‖F ≤ K

(
n∑

i=1

|λi − λ̃i|2 +
n−1∑

i=1

|µi − µ̃i|2
)1/2

, (4.7)

where the constant K depends on the quantities

d = max{λn, λ̃n} − min{λ1, λ̃1},

ǫ0 =
1

d
min
j,k

{|λj − µk|, |λ̃j − µ̃k|},

δ0 =
1

2d
min
j 6=k

{|λj − λk|, |µj − µk|, |λ̃j − λ̃k|, |µ̃j − µ̃k|, }.

which measure the separation of the given data.
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The constant K in (4.7) is significant in that it determines how the per-
turbation in the given data would be amplified. Its actual quantity, however,
remains opaque because the implicit function theorem warrants only its ex-
istence but not its content. Xu (1993) introduced a form of condition number
that could be explicitly estimated for SIEP6a. As a general rule, the smaller
the separation of the given data, the more ill conditioned SIEP6a becomes.

4.5. Numerical methods

We mentioned earlier that numerical algorithms for a JIEP often followed
directly from constructive proofs of its existence. Nevertheless, some of the
procedures are subtly unstable. To save space, we shall not evaluate each
method in this survey. Rather, we shall illustrate the basic ideas of two
popular approaches: the Lanczos method (Parlett 1998) and the orthogonal
reduction method (Boley and Golub 1987).

We first recall the following theorem, which is the basis of the Lanczos
approach.

Theorem 4.7. The orthogonal matrixQ and the upper Hessenberg matrix
H with positive subdiagonal entries can be completely determined by a given
matrix A and the last (or any) column of Q if the relationship QTAQ = H
holds.

In our application, we want to construct the symmetric tridiagonal matrix
J = QTΛQ with Λ = diag(λ1, . . . , λn). Thus, if the last column qn is known,
then the Jacobi matrix J can constructed in finitely many steps:

an := qT
nΛqn,

bn−1 := ‖Λqn − anqn‖,
qn−1 := (Λqn − anqn)/bn−1,

for i = 1, . . . , n− 2 {
an−i := qT

n−iΛqn−i,

bn−i−1 := ‖Λqn−i − an−iqn−i − bn−iqn−i+1‖,
qn−i−1 := (Λqn−i − an−iqn−i − bn−iqn−i+1)/bn−i−1,

}
a1 := qT

1 Λq1.

It only remains to calculate the column vector qn. To that end, we recall
a classical result by Thompson and McEnteggert (1968).

Theorem 4.8. (Thompson and McEnteggert 1968) Let (λi,xi), i =
1, . . . , n, be orthonormal eigenpairs that form the spectral decomposition of
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a given symmetric matrix A. Then

adj(λiI −A) =

n∏

k=1
k 6=i

(λi − λk)xix
T
i . (4.8)

Evaluating both sides of (4.8) at the (n, n) position, we obtain

det(λiIn−1 −An−1) = x2
ni

n∏

k=1
k 6=i

(λi − λk)

where xni is the last entry of xi, and recalling thatAn−1 denotes the principal
submatrix of size n− 1. In our application, the last column qn is precisely
[xn1, . . . , xnn]T , if A is replaced by J . It follows that

x2
ni =

∏n−1
k=1(λi − µk)

∏n
k=1
k 6=i

(λi − λk)
. (4.9)

In other words, the last column qn for J can be expressed in terms of the
spectral data {λ1, . . . , λn} and {µ1, . . . , µn−1}. The Lanczos algorithm kicks
in and SIEP6a is solved in finitely many steps.

We remark that other types of JIEP can be solved in similar ways with
appropriate modifications, but we shall not examine them here. Readers are
referred to the review paper by Boley and Golub (1987) and the book by
Xu (1998) for more details.

We caution that the method by de Boor and Golub (1978) using the
orthogonal polynomial approach is entirely equivalent to the above Lanczos
approach, but is less stable in the face of roundoff error. We suggest that a
reorthogonalization process should take place even along the Lanczos steps
to ensure stability.

In the orthogonal reduction method, the given data are used first to con-
struct a bordered diagonal matrix A of the form

A =








α β1 . . . βn−1

β1 µ1 0
...

. . .

βn−1 0 . . . µn−1








so that σ(A) = {λ1, . . . , λn}. Such a construction is entirely possible. First,
α is trivially determined as α =

∑n
i=1 λi −

∑n−1
i=1 µi. Secondly, the charac-

teristic polynomial is given by

det(λI −A) = (λ− α)
n−1∏

k=1

(λ− µk) −
n−1∑

i=1

β2
i







n−1∏

k=1
k 6=i

(λ− µk)






. (4.10)
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Thus, border elements βi are given by

β2
i = −

∏n
k=1(µi − λk)

∏n−1
k=1
k 6=i

(µi − µk)
.

Let β = [β1, . . . , βn−1]
T . The next step is to construct an orthogonal matrix

Q efficiently so that
[

1 0T

0 QT

]

A

[
1 0T

0 Q

]

=

[
α b1e

T
1

b1e1 J̄

]

(4.11)

becomes a Jacobi matrix. For this to happen, we must have QTβ = b1e1,
where e1 is the standard first coordinate vector in R

n−1. It follows that b1 =
‖β‖ and that the first column of Q is given by β/b1. The Lanczos procedure
can now be employed to finish up the constructionQTdiag(µ1, . . . , µn−1)Q =
J̄ and SIEP6a is solved in finite steps.

Finally, we remark that other tridiagonalization process, including House-
holder transformations, Givens rotations, the Rutishauser method (Gragg
and Harrod 1984), and so on, may also be used effectively to explore the
bordered diagonal structure (Boley and Golub 1987).

5. Toeplitz inverse eigenvalue problems

Given a column vector r = [r1, . . . , rn]T , a matrix T = T (r) of the form

T :=










r1 r2 . . . rn−1 rn
r2 r1 rn−2 rn−1
...

. . .
. . .

...
rn−1 r1 r2
rn rn−1 r2 r1










is called a symmetric Toeplitz matrix. An inverse Toeplitz eigenvalue prob-
lem (ToIEP) concerns finding a vector r ∈ Rn so that T (r) has a prescribed
set of real numbers {λ1, . . . , λn} as its spectrum. We mention in passing that
a similar IEP could be asked for a Hankel matrix H(r), related to the Toep-
litz matrix T (r) via H(r) = ΞT (r) and T (r) = ΞH(r), where Ξ is defined
by (4.3). The set T (n) of symmetric Toeplitz matrices forms a subset of a
larger class

C(n) := {M ∈ R
n×n|M = MT ,M = ΞMΞ}

of centrosymmetric matrices, where Ξ is the unit perdiagonal matrix. A
vector v is said to be even if Ξv = v, and odd if Ξv = −v. Every eigenspace
of a centrosymmetric matrix, and hence a symmetric Toeplitz matrix, has
a basis of even and odd vectors. The prescribed eigenvalues {λ1, . . . , λn} in
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a ToIEP, therefore, should also carry a corresponding parity assignment, as
we shall explore in the next section.

5.1. Symmetry and parity

In Table 5.1 we summarize some characteristics of centrosymmetric matrices
(Cantoni and Bulter 1976). Depending on whether n is even or odd, any
centrosymmetric matrix M must assume the symmetry as is indicated in
the second row of Table 5.1, where A,C,Ξ ∈ R

⌊n

2
⌋×⌊n

2
⌋, x ∈ R

⌊n

2
⌋, q ∈ R,

and A = AT . Let K be the orthogonal matrix defined in the table. Then
M can be decomposed into 2 × 2 diagonal blocks via orthogonal similarity
transformation by K. The blocks assume the forms shown in the last row
of Table 5.1.

Table 5.1. Structure of centrosymmetric matrices

n even odd

M

[
A CT

C ΞAΞ

]




A x CT

xT q xTΞ
C Ξx ΞAΞ





√
2K

[
I −Ξ
I Ξ

]




I 0 −Ξ

0
√

2 0
I 0 Ξ





KMKT

[
A− ΞC 0

0 A+ ΞC

]




A− ΞC 0 0

0 q
√

2xT

0
√

2x A+ ΞC





Effectively, the spectral decomposition of M is reduced to that of two
submatrices of about half the size. If Z1 denotes the ⌊n2 ⌋ × ⌊n2 ⌋ matrix of

orthonormal eigenvectors for A−ΞC, then columns from the matrix KT
[
Z1

0

]

will be eigenvectors of M . These eigenvectors are odd vectors. Similarly,
there are ⌈n2 ⌉ even eigenvectors of M computable from those of A+ ΞC or

[

q
√

2xT√
2x A+ ΞC

]

.

It is interesting to ask whether a symmetric Toeplitz matrix can have arbit-
rary spectrum with arbitrary parity. Can the parity be arbitrarily assigned
to the prescribed eigenvalues in a ToIEP?



Structured inverse eigenvalue problems 33

We consider the 3 × 3 case to further explore this question. Any matrix
M ∈ C(3) is of the form

M =





m11 m12 m13

× m22 ×
× × ×



,

where quantities denoted by × can be obtained by symmetry. Without loss
of generality, we may assume that the trace of M is zero. In this way,
the parameters are reduced to m11,m12 and m13. Let MC = MC(λ1, λ2, λ3)
denote the subset of centrosymmetric matrices with eigenvalues {λ1, λ2, λ3}.
Assuming

∑3
i=1 λi = 0, elements in MC must satisfy the equations

(

m11 −
λ̺1

4

)2

+
1

2
m2

12 =
(λ̺2 − λ̺3)

2

16
,

m13 = m11 − λ̺1 ,

where ̺ denotes any of the six permutations of {1, 2, 3}. Thus MC consists of
three ellipses in R

3. It suffices to plot these ellipses in the (m11,m12)-plane
only, since m13 is simply a shift of m11. Several plots with qualitatively
different eigenvalues are depicted in Figure 5.1. Observe that it is always
the case that one circumscribes the other two.

A 3×3 centrosymmetric matrix is a solution to the ToIEP only if m11 = 0.
By counting the number of m12-intercepts, we should be able to know the
number of solutions to the ToIEP. Specifically, we find that there are 4
solutions if eigenvalues are distinct and 2 solutions if one eigenvalue has
multiplicity 2. We note further that the parities of the prescribed eigenvalues
in the ToIEP cannot be arbitrary. Each of the ellipses corresponds to one
particular parity assignment among the eigenvalues. An ‘incorrect’ parity
assignment, such as the two smallest ellipses in the left column of Figure 5.1,
implies that there is no m12-intercept and, hence, no isospectral Toeplitz
matrix. As far as the ToIEP is concerned, parity assignment is not explicitly
given as part of the constraint. As a safeguard for ensuring existence, it has
been suggested in the literature that the ordered eigenvalues should have
alternating parity.

5.2. Existence

Despite the simplicity of the appearance of a ToIEP, the issue of its solv-
ability has been quite a challenge. Delsarte and Genin (1984) argued that
the problem would be analytically intractable if n ≥ 5. Eventually, using a
topological degree argument, Landau (1994) settled the following theorem
with a nonconstructive proof.

Theorem 5.1. (Landau 1994) Every set of n real numbers is the spec-
trum of an n× n real symmetric Toeplitz matrix.
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Figure 5.1. Plots of MC in the (m11,m12)-plane

It might be worthwhile to briefly outline the proof as it shows the existence
of a even more restricted class of Toeplitz matrices. A matrix T (r1, . . . , rn)
is said to be regular if every principal submatrix T (r1, . . . , rk), 1 ≤ k ≤ n,
has distinct eigenvalues that, when arranged in ascending order, alternate
parity with the largest one even. Consider the map ϕ : R

n−2 −→ R
n−2

defined by

ϕ(t3, . . . , tn) = (y2, . . . , yn−1),

where yi := − µi

µ1
, i = 2, . . . , n − 1, if µ1 ≤ · · · ≤ µn are eigenvalues of

T (0, 1, t3, . . . , tn). Note that since
∑n

i=1 µi = 0, it is necessary that µ1 < 0.
The range of ϕ is the simplex

∆ :=

{

(y2, . . . , yn−1) ∈ R
n−2| −1 ≤ y2 ≤ · · · ≤ yn−1

y2 + · · · + yn−2 + 2yn−1 ≤ 1

}

.

The key components in the proof by Landau (1994) are as follows. First, the
set F of regular Toeplitz matrices of the form T (0, 1, t3, . . . , tn) is not empty.
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Secondly, the map ϕ restricted to those points (t3, . . . , tn) ∈ R
n−2 such that

T (0, 1, t3, . . . , tn) ∈ F is a surjective map onto the interior of ∆. Finally,
any given λ1 ≤ · · · ≤ λn can be shifted and scaled to a unique point in ∆
whose pre-image(s) can then be scaled and shifted backward to a symmetric
Toeplitz matrix with eigenvalues {λ1, . . . , λn}.

5.3. Numerical methods

Lack of understanding does not necessarily preclude the development of ef-
fective numerical algorithms for the ToIEP. There are two basic approaches
to tackle the ToIEP numerically: one by iteration and the other by continu-
ation. We briefly describe the basic ideas for each approach in this section.

Regarding the ToIEP as a nonlinear system of n equations in n unknowns,
a natural tactic would be a Newton-type iteration. The schemes in Fried-
land, Nocedal and Overton (1987), originally proposed for the more general
class of PIEPs, are in this class and certainly applicable to the ToIEP. The
inverse Rayleigh quotient algorithm in Laurie (1988, 1991) is also equival-
ent to a Newton-type variation. These methods do not exploit the Toeplitz
structure and can suffer from local convergence. The iterative scheme pro-
posed by Trench (1997) seems to have more robust performance, but still
no global convergence can be proved. The following discussion is another
Newton-type iteration by Chu (1994). The iterations are confined in C(n).
Since the centrosymmetric structure is preserved, the cost is substantially
reduced and the case of double eigenvalues can be handled effectively.

Recall that the classical Newton method

x(ν+1) = x(ν) − (f ′(x(ν)))−1f(x(ν))

for a scalar function f : R −→ R can be thought of as two steps: the tangent
step where x(ν+1) is the x-intercept of the tangent line from (x(ν), f(x(ν)))
of the graph of f , and the lift step where the point (x(ν+1), f(x(ν+1))) is a
natural lift of the intercept along the y-axis to the graph of f . Let the given
eigenvalues {λ1, . . . , λn} be arranged as λ = [φ1, . . . , φ⌊n

2
⌋, ψ1, . . . , ψ⌈n

2
⌉]
T ,

where φk and ψk are of parity even and odd, respectively. Let Λ = diag(λ).
An analogue of this idea applied to the ToIEP is to think of the isospectral
subset MC = MC(Λ) of centrosymmetric matrices as the graph of some
unknown f , and the subspace T (n) of symmetric Toeplitz matrices as the
x-axis. We want to do the tangent and lift iterations between these two
entities. From Section 5.1, we see that every element M ∈ MC can be
characterized by the parameter Z ∈ O(⌊n2 ⌋) × O(⌈n2 ⌉) where M = QΛQT

and Z = KQ. It follows that tangent vectors of MC at M are of the form

TM (MC) = S̃M −MS̃, (5.1)

with S̃ := Qdiag(S1, S2)Q
T where S1 and S2 are arbitrary skew-symmetric
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matrices in R
⌊n

2
⌋×⌊n

2
⌋ and R

⌈n

2
⌉×⌈n

2
⌉, respectively. Thus a tangent step from

a given M (ν) ∈ MC(Λ) amounts to finding a skew-symmetric matrix S̃(ν)

and a vector r(ν+1) so that

M (ν) + S̃(ν)M (ν) −M (ν)S̃(ν) = T (r(ν+1)). (5.2)

Assume the spectral decomposition M (ν) = Q(ν)ΛQ(ν)T and define Z(ν) =
KQ(ν). The tangent equation is reduced to

Λ + S(ν)Λ − ΛS(ν) = Z(ν)T
(
KT (r(ν+1))KT

)
Z(ν), (5.3)

where S(ν) = Q(ν)T S̃(ν)Q(ν) remains skew-symmetric. Note that the product

KT (r(ν+1))KT is a 2 × 2 diagonal block matrix, denoted by diag(T
(ν+1)
1 ,

T
(ν+1)
2 ), because T (r(ν+1)) is centrosymmetric. We also know from the dis-

cussion in Section 5.1 that Z(ν) = diag(Z
(ν)
1 , Z

(ν)
2 ). Thus the system (5.3) is

effectively split in half.
We first retrieve the vector r(ν+1). It suffices to compare the diagonal

elements on both sides without reference to S(ν). Note that the right-hand
side of (5.3) is linear in r(ν+1). This linear relationship can be expressed as

Ω(ν)r(ν+1) = λ

for r(ν+1), where the entries in the matrix Ω(ν) = [Ω
(ν)
ij ] are defined by

Ω
(ν)
ij :=







(Z
(ν)
1 )T∗iE

[j]
1 (Z

(ν)
1 )∗i, if 1 ≤ i ≤ ⌊n2 ⌋,

(Z
(ν)
2 )T∗iE

[j]
2 (Z

(ν)
2 )∗i, if ⌊n2 ⌋ < i ≤ n.

In the above, E
[j]
1 and E

[j]
2 are the diagonal blocks in the 2×2 diagonal block

matrix KT (ej)K
T , ej is the jth standard unit vector, and (Z

(ν)
k )∗i denotes

the ith column of the matrix Z
(ν)
k . Throughout the calculations, we need

only to multiply vectors or matrices of lengths ⌊n2 ⌋ or ⌈n2 ⌉. Once T (r(ν+1))

is determined, off-diagonal elements in (5.3) determine S(ν). Specifically, if
eigenvalues within each parity group are distinct, then it is easy to see that

(S
(ν)
1 )ij =

(Z
(ν)
1 )T∗iT

(ν+1)
1 (Z

(ν)
1 )∗j

φi − φj
, 1≤ i<j≤

⌊n

2

⌋

,

(S
(ν)
2 )ij =

(Z
(ν)
2 )T∗iT

(ν+1)
2 (Z

(ν)
2 )∗j

ψi − ψj
, 1≤ i<j≤

⌈n

2

⌉

.

This completes the calculation for the tangent step. We remark that the
scheme is capable of handling the case of double eigenvalues because such
eigenvalues have to be split into one even and one odd (Delsarte and Genin
1984).
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Figure 5.2. Geometry of lift by Wielandt–Hoffman theorem

To obtain a lift from T (r(ν+1)) to MC , we look for any matrix M (ν+1) ∈
MC that is nearest to T (r(ν+1)). The idea is sketched in Figure 5.2. Such a
nearest approximation can be obtained by the Wielandt–Hoffman theorem.
That is, suppose the spectral decomposition of T (r(ν+1)) is given by

Z
(ν+1)T

KT (r(ν+1))KTZ
(ν+1)

=

[

Λ
(ν+1)
1 0

0 Λ
(ν+1)
2

]

.

Rearrange {λ1, . . . , λn} in the same ordering as in Λ
(ν+1)
1 and Λ

(ν+1)
2 to ob-

tain Λ̃
(ν+1)
1 and Λ̃

(ν+1)
2 . Then the nearest approximation M (ν+1) is given by

M (ν+1) := KTZ
(ν+1)

diag
(
Λ̃

(ν+1)
1 , Λ̃

(ν+1)
2

)
Z

(ν+1)T
K.

For computational purposes, this M (ν+1) never needs to be calculated. We
only need to repeat the tangent step with the new parity assignment Λ =

diag(Λ̃
(ν+1)
1 , Λ̃

(ν+1)
2 ) and the new parameter matrix Z(ν+1) := Z

(ν+1)
. It can

be proved that this method converges quadratically.
An alternative approach, fundamentally different from iterative methods,

is to solve the ToIEP by tracing curves defined by differential equations.
The idea is to continually transform the matrix Λ until a Toeplitz matrix is
found. One such formulation is the initial value problem

{
dX
dt = [X, k(X)],

X(0) = Λ,
(5.4)
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where [A,B] := AB − BA denotes the Lie bracket and k(X) = [kij(X)] is
defined by

kij(X) :=







xi+1,j − xi,j−1, if 1 ≤ i < j ≤ n,
0, if 1 ≤ i = j ≤ n,
xi,j−1 − xi+1,j , if 1 ≤ j < i ≤ n.

(5.5)

The skew-symmetry of k(X) guarantees that the solutionX(t) to (5.4) exists
for all t and enjoys a continuous spectral decomposition X(t) = Q(t)TΛQ(t).
The orthogonal transformation Q(t) is determined by the initial value prob-
lem {

dQ
dt = Qk(QTΛQ),

Q(0) = I.
(5.6)

The limiting behaviour of Q(t) determines the limiting behaviour of X(t)
and vice versa. The hope of getting a solution to the ToIEP hinges upon
that k(X) = 0 if and only if X is a Toeplitz matrix. For that reason, k(X)
is called a Toeplitz annihilator in Chu (1993). The system (5.6) can be
integrated effectively by available geometric integrators (Calvo, Iserles and
Zanna 1997, Dieci, Russel and Vleck 1994, Iserles, Munthe-Kaas, Nørsett
and Zanna 2000). Numerical experiences seem to suggest that the flows
always converge, but a rigorous proof is still missing.

6. Nonnegative inverse eigenvalue problems

The nonnegative inverse eigenvalue problem (NIEP) concerns the construc-
tion of an entry-wise nonnegative matrix A ∈ R

n×n with a prescribed set
{λ1, . . . , λn} of eigenvalues. Partially because of the important Perron–
Frobenius theory, this inverse problem has drawn considerable interest in
the literature.

The earliest study of this subject was perhaps that of the Russian math-
ematician Sulĕımanova (1949) on stochastic matrices, followed by Perfect
(1953, 1955). The first systematic treatment of eigenvalues of symmetric
nonnegative matrices should probably be attributed to Fiedler (1974). A
more comprehensive study was conducted by Boyle and Handelman (1991),
using the notion of symbolic dynamics to characterize the conditions that a
given set is a portion of the spectrum of a nonnegative matrix or primitive
matrix. General treatises on nonnegative matrices and their applications
include the books by Berman and Plemmons (1979) and Minc (1988). Both
books devote extensive discussion to the NIEP as well. Most of the discus-
sions in the literature centre around finding conditions to qualify a given
set of values as the spectrum of some nonnegative matrices. A short list of
references giving various necessary or sufficient conditions includes Barrett
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and Johnson (1984), Boyle and Handelman (1991), Friedland (1978), Fried-
land and Melkman (1979), Loewy and London (1978), de Oliveira (1983)
and Reams (1996). The trouble is that the necessary condition is usually
too general and the sufficient condition too specific. Under a few special
sufficient conditions, the nonnegative matrices can be constructed numeric-
ally (Soules 1983). General numerical treatments for NIEPs, even knowing
the existence of a solution, are not available at the time of writing.

A further refinement in the posing of NIEPs has also attracted some
attention. Suppose the given eigenvalues {λ1, . . . , λn} are all real. The real-
valued nonnegative inverse eigenvalue problem (RNIEP) concerns which
set of values {λ1, . . . , λn} occurs as the spectrum of a nonnegative matrix.
The symmetric nonnegative inverse eigenvalue problem (SNIEP) concerns
which set occurs as the spectrum of a symmetric nonnegative matrix. It was
proved that there exist real numbers {λ1, . . . , λn} that solve the RNIEP but
not the SNIEP (Guo 1996, Johnson, Laffey and Loewy 1996).

6.1. Some existence results

The solvability of the NIEP has been the major issue of discussion in the
literature. Existence results, either necessary or sufficient, are too numerous
to be listed here. We shall mention only two results that, in some sense,
provide the most distinct criteria in this regard.

Given a matrix A, the moments of A are defined to be the sequence of
numbers sk = trace(Ak). Recall that, if σ(A) = {λ1, . . . , λn}, then

sk =

n∑

i=1

λki .

For nonnegative matrices, the moments are always nonnegative. The fol-
lowing necessary condition is due to Loewy and London (1978).

Theorem 6.1. (Loewy and London 1978) Suppose {λ1, . . . , λn} are ei-
genvalues of an n× n nonnegative matrix. Then the inequalities

smk ≤ nm−1skm (6.1)

hold for all k,m = 1, 2, . . . .

Note also that the inequalities in (6.1) are sharp, being equalities for the
identity matrix. If we further limit the inverse problem to positive matrices,
that is, every entry exceeds zero, it turns out that the eigenvalues can be
completely characterized. The following necessary and sufficient condition
appeared at the end of the long treatise by Boyle and Handelman (1991,
p. 313)
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Theorem 6.2. (Boyle and Handelman 1991) The set {λ1, . . . , λn} ⊂
C, with λ1 = max1≤i≤n |λi|, is the nonzero spectrum of a positive matrix of
size m ≥ n if and only if:

(1) λ1 > |λi| for all i > 1,
(2) sk > 0 for all k = 1, 2, . . . , and
(3)

∏n
i=1(t− λi) has real coefficients in t.

6.2. Symmetric nonnegative inverse eigenvalue problem

We shall discuss a least squares approach for solving the general NIEP in
the next section. At present, we touch upon the SNIEP with a few more
comments.

First, we remark that solvability of SNIEPs remains open. Some sufficient
conditions are listed in Berman and Plemmons (1979, Chapter 4). The set
λ = { 3

√
51 + ǫ, 1, 1, 1,−3,−3}, with ǫ > 0, however, does not satisfy any

of these conditions. In fact, it cannot be the nonzero spectrum of any
symmetric nonnegative matrix (Johnson et al. 1996).

Friedland and Melkman (1979) limited the consideration of NIEPs to sym-
metric tridiagonal structure. A simple result can be established.

Theorem 6.3. (Friedland and Melkman 1979) A set of real numbers
λ1 ≥ λ2 ≥ · · · ≥ λn is the spectrum of an n × n nonnegative tridiagonal
matrix if and only if λi + λn−i+1 = 0 for all i. In this case, the matrix is
given by J = diag(A1, · · · , A[(n+1)/2]), where

Ai =
1

2

[
λi + λn−i+1 λi − λn−i+1

λi − λn−i+1 λi + λn−i+1

]

, 1 ≤ i < (n+ 1)/2,

and Ai = [λi], if i = (n+ 1)/2 and n is odd.

Note that the matrix J constructed above is reducible when n > 2. The
problem becomes harder if J is required further to be Jacobi, that is, with
positive subdiagonal elements. One sufficient but not necessary condition
for this particular JIEP is as follows.

Theorem 6.4. If λ1 > λ2 > · · · > λn and if λi +λn−i+1 > 0 for all i, then
there exists a positive Jacobi matrix with spectrum {λ1, . . . , λn}.

It would be very difficult to achieve a nearly simple characterization of
solution to a general SNIEP. On the other hand, we could formulate the
SNIEP as a constrained optimization problem of minimizing the objective
function

F (Q,R) :=
1

2
‖QTΛQ−R ◦R‖2,

subject to the constraint (Q,R) ∈ O(n) × S(n), where ◦ stands for the
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Hadamard product and S(n) stands for the subspace of n × n symmetric
matrices. The idea is to parametrize any symmetric matrix X = QTΛQ
that is isospectral to Λ by the orthogonal matrix Q and to parametrize any
symmetric nonnegative matrix Y = R ◦ R by the symmetric matrix R via
entry-wise squares. The SNIEP is solvable if and only if F (Q,R) = 0 for
someQ and R. Such a formulation offers a handle for numerical computation
by optimization techniques. In Chu and Driessel (1991), the dynamical
system {

dX
dt = [X, [X,Y ]],
dY
dt = 4Y ◦ (X − Y ),

(6.2)

resulting from projected gradient flow, was studied as a possible numerical
means for solving the SNIEP. It is interesting to note that, even if the
SNIEP is not solvable, the limit point of the gradient flow gives rise to a
least squares solution. We shall discuss an analogous approach of (6.2) for
NIEPs in Section 7.2.

7. Stochastic inverse eigenvalue problems

An n×n nonnegative matrix is a (row) stochastic matrix if all its row sums
are 1. The stochastic inverse eigenvalue problem (StIEP) concerns the
construction of a stochastic matrix with prescribed spectrum. Clearly the
StIEP is a special NIEP with the additional row sum structure. It should be
noted that, in contrast to the linearly constrained IEPs discussed thus far,
the structure involved in the StIEP is nonlinear in the sense that the sum
of two (stochastic) structured matrices does not have the same (stochastic)
structure.

The Perron–Frobenius theorem asserts that the spectral radius ρ(A) of an
irreducible nonnegative matrix A is a positive maximal eigenvalue of A. The
corresponding maximal eigenvector can be chosen to have all elements posit-
ive. Recall also that the set of reducible matrices forms a subset of measure
zero. With this in mind, the spectral properties for stochastic matrices do
not differ much from those of other nonnegative matrices, because of the
following result (Minc 1988).

Theorem 7.1. Let A be any nonnegative matrix with positive maximal
eigenvalue r and a positive maximal eigenvector x. Let D = diag(x). Then
D−1r−1AD is a stochastic matrix.

This motivates the notion that, if we could construct a generic solution
for the NIEP, then we would also solve the StIEP by a diagonal similarity
transformation. We shall pursue this idea as a numerical method for both
the NIEP and the StIEP.
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7.1. Existence

The StIEP is a hard problem. First, we note that Minc (1988) called our
StIEP an inverse spectrum problem to distinguish it carefully from the prob-
lem of determining conditions under which one single complex number is an
eigenvalue of a stochastic matrix. For the latter, the set Θn of points in
the complex plane that are eigenvalues of any n× n stochastic matrices has
been completely characterized by Karpelevič (1951). The complete state-
ment of Karpelevič’s theorem is rather lengthy (Minc 1988, Theorem 1.8),
so we shall only highlight the main points below.

Theorem 7.2. (Karpelevič 1951) The region Θn is contained in the
unit disk and is symmetric with respect to the real axis. It intersects the
unit circle at points e2πia/b where a and b range over all integers such that
0 ≤ a < b ≤ n. The boundary of Θn consists of curvilinear arcs connecting
these points in circular order. Any λ on these arcs must satisfy one of these
equations:

λq(λp − t)r = (1 − t)r,

(λb − t)d = (1 − t)dλq,

where 0 ≤ t ≤ 1, and b, d, p, q, r are natural integers determined by certain
specific rules (explicitly given in Karpelevič (1951) and Minc (1988)).

An example Θ4 is sketched in Figure 7.1. It should be stressed that the
Karpelevič theorem characterizes only one complex value a time. It does not
provide further insights into when two or more points in Θn are eigenvalues
of the same stochastic matrix. It provides only a necessary condition for
the StIEP.

We conclude this section with perhaps the first sufficient condition due to
Sulĕımanova (1949).

Theorem 7.3. (Sulĕımanova 1949) The n real numbers 1, λ1, . . . , λn−1,
with |λj | < 1, are the characteristic values of some positive stochastic matrix
of order n if

∑ |λj | < 1, where the sum is over the js with λj < 0. If the
λjs are all negative the condition is also necessary.

Most of the sufficient conditions for the StIEP are imposed on real ei-
genvalues (Sulĕımanova 1949, Perfect 1953, Perfect 1955). If the resulting
nonnegative matrix is generic, then the sufficient conditions for the NIEP
also apply to the StIEP by Theorem 7.1.

7.2. Numerical method

It appears that, except for Soules (1983), none of the proofs for sufficient
conditions is constructive, and no numerical algorithms are available even if
a sufficient condition is satisfied. Even with Soules (1983), the construction
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Figure 7.1. Θ4 by the Karpelevič theorem

is limited in that the components of the Perron eigenvector need to satisfy
additional inequalities. Recently, Chu and Guo (1998) proposed the follow-
ing least squares approach that might be employed to solve the NIEP and
the StIEP for generally prescribed eigenvalues. The idea is parallel to that
of (6.2).

The diagonal matrix Λ = diag(λ1, . . . , λn) can be transformed, if neces-
sary, into a diagonal block matrix with 2 × 2 real blocks, if some of the
given eigenvalues appear in complex conjugate pairs. The set of isospectral
matrices

M(Λ) = {PΛP−1 ∈ R
n×n|P ∈ R

n×n is nonsingular}
is parametrized by nonsingular matrices P . The cone of nonnegative matrices

π(Rn
+) := {B ◦B|B ∈ R

n×n}
is characterized by the Hadamard product of general square matrices. A
solution to the NIEP must be at the intersection of M(Λ) and π(Rn+), if
there is any. If such a nonnegative matrix has positive maximal eigenvector,
it can be reduced to a stochastic matrix by diagonal similarity transforma-
tion. We thus formulate the constrained optimization problem

Minimize F (P,R) :=
1

2
‖PΛP−1 −R ◦R‖2,

Subject to P ∈ Gl(n), R ∈ R
n×n,

where Gl(n) denotes the group of invertible matrices in R
n×n. We use P

and R as variables to manoeuvre elements in M(Λ) and π(Rn
+) to reduce
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the objective value. Clearly, the feasible sets are open and a minimum may
not exist. With respect to the induced inner product,

〈(X1, Y1), (X2, Y2)〉 := 〈X1, X2〉 + 〈Y1, Y2〉,
in the product topology of R

n×n×R
n×n, the gradient of F can be expressed

as the pair

∇F (P,R) = ([∆(P,R),M(P )T ]P−T ,−2∆(P,R) ◦R), (7.1)

where we recall that [·, ·] is the Lie bracket, and we abbreviate

M(P ) := PΛP−1,

∆(P,R) := M(P ) −R ◦R.
The differential system

dP

dt
= [M(P )T ,∆(P,R)]P−T ,

dR

dt
= 2∆(P,R) ◦R

thus provides a steepest descent flow on the feasible set Gl(n) × R
n×n for

the objective function F (P,R).
There is an unexpected advantage that deserves mentioning. Note that

the zero structure in the original matrix R(0) is preserved throughout the
integration due to the Hadamard product. This feature may be exploited to
construct a Markov chain with prescribed linkages and spectrum. That is,
if it is desirable that state i is not allowed to transit into state j, we assign
rij = 0 in the initial value R(0). That zero transit status is maintained
throughout the evolution.

On the other hand, the solution flow P (t) is susceptible to becoming
singular and the involvement of P−1 is somewhat worrisome. A remedy
is to monitor the analytic singular value decomposition (ASVD) (Bunse-
Gerstner, Byers, Mehrmann and Nichols 1991, Wright 1992),

P (t) = X(t)S(t)Y (t)T , (7.2)

of the path of matrices P (t). In (7.2), X(t) and Y (t) are orthogonal, S(t)
is diagonal, and all are analytic in t. Such an ASVD flow exists because
the solution P (t) is analytic, by the Cauchy–Kovalevskaya theorem. The
flow (P (t), R(t)) is equivalent to the flow of (X(t), S(t), Y (t), R(t)), where
the differential equations governing X(t), S(t), and Y (t) can be obtained as
follows (Wright 1992).

On differentiating (7.2), we have

XT dP

dt
Y = XT dX

dt
︸ ︷︷ ︸

Z

S +
dS

dt
+ S

dY T

dt
Y

︸ ︷︷ ︸

W

, (7.3)
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where both Z andW are skew-symmetric matrices. Note that Q := XT dP
dt Y

is known since dP
dt is already specified. Note also that the inverse of P (t)

can be calculated from P−1 = Y S−1XT , whereas the diagonal entries of
S = diag{s1, . . . , sn} provide us with information about the proximity of
P (t) to singularity. The diagonals on both sides of (7.3) lead to the equation

dS

dt
= diag(Q)

for S(t). The off-diagonals on both sides of (7.3) give rise to

dX

dt
= XZ,

dy

dt
= YW,

where, if s2k 6= s2j (in case of equality, W and Z can still be obtained by other
means (Wright 1992)), entries of W and Z are obtained from

zjk =
skqjk + sjqkj
s2k − s2j

,

wjk =
sjqjk + skqkj
s2j − s2k

for all j > k. The flow is now ready to be integrated by available geometric
integrators.

We note that dF (P (t),R(t))
dt = −‖∇F (P (t), R(t))‖2 ≤ 0. Thus the method

fails to solve the NIEP only in two situations: either P (t) becomes singular
in finite time or F (P (t), R(t)) converges to a least squares local solution. In
the former case, a restart might avoid the problem. In the latter case, either
the NIEP has no solution at all or the algorithm needs a restart.

8. Unitary Hessenberg inverse eigenvalue problems

Eigenvalues of unitary matrices are on the unit circle. The unitary Hessen-
berg inverse eigenvalue problem (UHIEP) concerns the construction of an
unitary Hessenberg matrix with prescribed points on the unit circle. Eigen-
value problems for unitary Hessenberg matrices arise naturally in several
signal processing applications, including the frequency estimation procedure
and the harmonic retrieval problem for radar or sonar navigation. The char-
acteristic polynomials of unitary Hessenberg matrices are the well-known
Szegő polynomials. The Szegő polynomials are orthogonal with respect to a
certain measure on the unit circle in just the same way as the characteristic
polynomials of the Jacobi matrices are orthogonal with respect to a certain
weight on an interval. In many ways, theory and algorithms for the UHIEP
are similar to those for the JIEP. Most of the discussion in this section are
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results adapted from Ammar, Gragg and Reichel (1991) and Ammar and
He (1995).

Any upper Hessenberg unitary matrix H with positive subdiagonal entries
can uniquely expressed as the product

H = G1(η1) · · ·Gn−1(ηn−1)G̃n(ηn), (8.1)

where ηk are complex numbers with |ηk| < 1 for 1 ≤ k < n and |ηn| = 1,
each Gk(ηk), k = 1, . . . , n− 1 is a Givens rotation,

Gk(ηk) =







Ik−1

−ηk ζk
ζk η̄k

In−k+1







with ζk :=
√

1 − |ηk|2 and G̃n(ηn) = diag[In−1,−ηn]. In other words, each
unitary upper Hessenberg matrix is determined by 2n− 1 real parameters,
another feature analogous to the Jacobi matrices. For convenience, this
dependence is denoted by H = H(η1, . . . , ηn). The decomposition (8.1),
referred to as the Schur parametrization, plays a fundamental role in efficient
algorithms for upper Hessenberg unitary matrices.

There are considerable similarities between UHIEPs and JIEPs. The fol-
lowing two UHIEPs, for example, are analogous to SIEP8 and SIEP6a, re-
spectively.

Theorem 8.1. (Ammar and He 1995) Given two sets {λ1, . . . , λn} and
{µ1, . . . , µn} of strictly interlaced points on the unit circle, there exist a
unique unitary upper Hessenberg matrix H = H(η1, . . . , ηn) and a unique
complex number α of unit modulus such that σ(H) = {λ1, . . . , λn} and
σ(H(αη1, . . . , αηn)) = {µ1, . . . , µn}.

Note that the matrix H̃ = H(αη1, . . . , αηn) is a rank-one perturbation
of H(η1, . . . , ηn), because H̃ = (I − (1 − α)e1e

T
1 )H. Unlike SIEP8, this

perturbation does not just affect the (n, n) entry.
The leading principal submatrix Hn−1 of a unitary matrix is not unitary,

and its eigenvalues do not lie on the unit circle. One way to modify the
notion of submatrix is as follows.

Theorem 8.2. (Ammar and He 1995) Given two sets of strictly inter-
laced points {λ1, . . . , λn} and {µ0, µ1, . . . , µn−1} on the unit circle, there
exist a unique unitary upper Hessenberg matrix H = H(η1, . . . , ηn) such
that σ(H) = {λ1, . . . , λn} and σ(H(η1, . . . , ηn−2, ρn−1)) = {µ1, . . . , µn−1}
with ρn−1 = (ηn−1 + µ̄0ηn)/(1 + µ̄0η̄n−1ηn).

Just like JIEPs, the proofs of existence for the above results can be turned
into numerical methods, such as the Lanczos/Arnoldi algorithm. More de-
tails can be found in Ammar et al. (1991) and Ammar and He (1995).
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9. Inverse eigenvalue problems with prescribed entries

A very large class of SIEPs can be described as inverse eigenvalue prob-
lems with prescribed entries (PEIEP). The prescribed entries are used to
characterize the underlying structure. The most general setting can be de-
lineated as follows (Ikramov and Chugunov 2000). Given a certain subset
L = {(it, jt)}ℓt=1 of pairs of subscripts, a certain set of values {a1, . . . , aℓ}
over a field F, and a set of n values {λ1, . . . , λn}, find a matrix X ∈ F

n×n

such that
{

σ(X) = {λ1, . . . , λn},
Xit,jt = at for t = 1, . . . , ℓ.

Let the cardinality ℓ of the index set L be denoted by |L|. The PEIEP is
to determine (complete) values for the n2 −|L| positions that do not belong
to L so as to satisfy the spectral constraint. The Jacobi structure can be
considered as a special case of PEIEP where, in addition to the desired
symmetry of the band, elements outside the tridiagonal band are required
to be zero. Another interesting variation of the PEIEP is the completion
problem, where only a one-to-one correspondence between the ℓ positions
in L and the ℓ prescribed values {a1, . . . , aℓ}, but not in any specific order,
is required. Two major points that have been the focus of discussion in the
literature are to determine the cardinality |L| so that the problem makes
sense, and to study the effect of the locations in L.

9.1. Prescribed entries along the diagonal

Perhaps a natural place to begin the discussion of PEIEPs is the construc-
tion of a Hermitian matrix with prescribed diagonal entries and eigenvalues.
Recall that a vector a ∈ R

n is said to majorize λ ∈ R
n if, assuming the or-

derings aj1 ≤ · · · ≤ ajn and λm1 ≤ · · · ≤ λmn
of their elements, the following

relationships hold:
{∑k

i=1 λmi
≤
∑k

i=1 aji , k = 1, . . . , n,
∑n

i=1 λmi
=
∑n

i=1 aji .
(9.1)

The necessary and sufficient relationship between the diagonal entries and
the eigenvalues of a Hermitian matrix is completely characterized by the
Schur–Horn theorem.

Theorem 9.1. (Horn 1954a) A Hermitian matrix H with eigenvalues λ
and diagonal entries a exists if and only if a majorizes λ.

The sufficient condition is the harder part of the proof and that is precisely
the heart of the Schur–Horn inverse eigenvalue problem (SHIEP): given two
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vectors a and λ where a majorizes λ, construct a Hermitian matrix with
diagonals a and eigenvalues λ. The original proof was done by mathematical
induction. A continuous method was discussed in Chu (1995). A finite
iterative method was described by Zha and Zhang (1995).

Without the Hermitian structure, the connection between eigenvalues and
diagonal entries of a general matrix is given by the Mirsky theorem.

Theorem 9.2. (Mirsky 1958) A matrix with eigenvalues λ1, . . . , λn and
main diagonal elements a1, . . . , an exists if and only if

n∑

i=1

ai =
n∑

i=1

λi. (9.2)

Again, the sufficient condition in the Mirsky theorem constitutes an in-
verse problem where the prescribed entries are along the diagonal. An in-
verse problem as such would be of little interest. Later, de Oliveira (1973a,
1973b, 1975) generalized the Mirsky theorem to the case of non-principal
diagonals. Given a permutation ̺, the positions in a matrix corresponding
to the index set D = {(i, ̺(i))}ni=1 is called a ̺-diagonal of that matrix.

Theorem 9.3. (de Oliveira 1973b) Let {λ1, . . . , λn} and {a1, . . . , an}
be two sets of arbitrary numbers over a field F. Suppose that at least one
of the disjoint cycles in the product representation ̺ = ̺1 · · · ̺s has length
> 2. Then there exists a matrix X ∈ F

n×n such that σ(X) = {λ1, . . . , λn}
and Xi,̺(i) = ai for i = 1, . . . , n.

The assumption in the de Oliveira theorem, that at least one cycle has
length greater than 2, precludes the case that ̺ is the identity and, hence,
the equality (9.2) is not needed. If no cycle is of length > 2, then a similar
result holds under some additional restrictions (de Oliveira 1973b, Theorem
2). Using the so-called L-transform, the proof of the de Oliveira theorem
is constructive, and can be converted into a finite numerical algorithm. We
shall comment more on this in the next few sections.

Having described two types of PEIEP arising from the Schur–Horn the-
orem and the de Oliveira theorem, respectively, we might as well bring forth
another class of inverse problem with prescribed entries that involves sin-
gular values instead of eigenvalues. The following Sing–Thompson theorem
characterizes the relationship between singular values and diagonal entries
of a general matrix.

Theorem 9.4. (Sing 1976, Thompson 1977) Assume that elements in
two given vectors d, s ∈ R

n satisfy s1 ≥ s2 ≥ · · · ≥ sn and |d1| ≥ |d2| ≥
· · · ≥ |dn|. Then a real matrix with singular values s and main diagonal
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entries d (possibly in different order) exists if and only if
{∑k

i=1 |di| ≤∑k
i=1 si, for k = 1, . . . , n,

(
∑n−1

i=1 |di|
)

− |dn| ≤
(
∑n−1

i=1 si

)

− sn.
(9.3)

The sufficient condition in the Sing–Thompson theorem gives rise to an
inverse singular value problem (STISVP) of constructing a square matrix
with prescribed diagonals and singular values. The original proof was done
by mathematical induction. Chu (1999) rewrote it as a divide-and-conquer
algorithm that can easily be implemented in any programming language
that supports recursion.

9.2. Prescribed entries at arbitrary locations

Note that the PEIEP in the Mirsky theorem really involves only n − 1
prescribed entries a1, . . . , an−1 because an is determined from (9.2). London
and Minc (1972) showed that the restriction of the n− 1 prescribed entries
to the main diagonal was unnecessary.

Theorem 9.5. (London and Minc 1972) Given two sets {λ1, . . . , λn}
and {a1, . . . , an−1} of arbitrary numbers in an algebraically closed field F,
suppose L = {(it, jt)}n−1

t=1 is a set of arbitrary but distinct positions. Then
there exists a matrix X ∈ F

n×n such that σ(X) = {λ1, . . . , λn} and Xit,jt =
at for t = 1, . . . , n− 1.

An alternative proof was given in de Oliveira (1973b). Both proofs used
mathematical induction. In principle, we think a fast recursive algorithm
similar to those for the SHIEP and the STISVP could be devised. We
have not yet seen its numerical implementation. Similar inverse problems
constructing matrices with arbitrary n−1 prescribed entries and prescribed
characteristic polynomials are considered in Dias da Silva (1974) and Ik-
ramov and Chugunov (2000).

An interesting follow-up question to the London–Minc theorem is how
many more entries of a matrix can be specified while the associated PEIEP
is still solvable. Obviously, as we have learned by now, the locations of these
prescribed entries also have some effect on the solvability. To help us better
grasp the scope of this complicated issue, we first turn our attention to
another subclass of PEIEPs before we return to this question in Section 9.4.

9.3. Additive inverse eigenvalue problem

Thus far, we have considered several cases of PEIEPs with small |L|. With
|L| = n − 1, the London and Minc theorem asserts that the PEIEP is
always solvable with no other constraints. With |L| = n, the PEIEP is
solvable under some constraints. Indeed, Ikramov and Chugunov (2000,
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Section 3b) argued meticulously through various cases to draw the most
general conclusion.

Theorem 9.6. (Ikramov and Chugunov 2000) Suppose that the field
F is algebraically closed and that |L| = n. Assume that the following two
conditions are met, if they occur:
{

that (9.2) is satisfied, if L = {(i, i)}ni=1, or

that ai = λj for some j, if L = {(i, jt)}nt=1 and at = 0 for all jt 6= i.

Then the PEIEP is solvable via rational algorithms in F. (A Maple code that
generates a solution in closed form has been implemented by Chugunov.)

In both cases, there is plenty of room, that is, n2 − |L| free locations, for
constructing such a matrix. In contrast, the classical AIEP (see (2.14)) is
another type of PEIEP with much less room for free locations. Recall that
an AIEP concerns adding a diagonal matrix D to a given matrix A so that
σ(A + D) has a prescribed spectrum (note that in a more general context
D need not be a diagonal, but can be defined by the complement to any
index set L). In the AIEP, the prescribed entries consist of all off-diagonal
elements, and thus |L| = n2 − n. In this case, the following brilliant result
is due to Friedland (1972). See also Friedland (1977).

Theorem 9.7. (Friedland 1977) The AIEP over any algebraically closed
field is always solvable. If n is the order of the problem, then there exist
at most n! solutions. For almost all given {λ1, . . . , λn}, there are exactly n!
solutions.

Somewhere there is a threshold on the cardinality |L| of prescribed entries
that changes the PEIEP from finitely solvable to finitely unsolvable. It is
known that the AIEP in general cannot be solved in finitely many steps. The
AIEP in which all off-diagonal entries are 1, for example, is not solvable in
radicals for n ≥ 5. The AIEP for a Jacobi matrix with subdiagonal (and
superdiagonal) entries 1 is not solvable in radicals even for n = 4 (Ikramov
and Chugunov 2000). The AIEP has to be solved by other types of numerical
methods (Friedland, Nocedal and Overton 1986).

It is critical to the observer that the solvability assured in both The-
orem 9.6 and Theorem 9.7 requires that the underlying field F is algebraic-
ally closed. In Chu (1998), such an AIEP was referred to as AIEP3. The
AIEP over the field R of real numbers was referred to as AIEP1, and AIEP2
if the matrix A is real symmetric. The AIEP is not always solvable over R.
It is easy to see, for instance, that a necessary condition for the real solv-
ability of AIEP1 is that

∑

i6=j(λi − λj)
2 ≥ 2n

∑

i6=j aijaji. For convenience,

define π(M) := ‖M −diag(M)‖∞. The separation of prescribed eigenvalues
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relative to the size of (prescribed) off-diagonal entries of A renders some
sufficient conditions for the real solvability.

Theorem 9.8. Given a set λ = {λ1, . . . , λn} of eigenvalues, define the
separation of eigenvalues by

d(λ) := min
i6=j

|λi − λj |. (9.4)

Then:

(1) if d(λ) > 2
√

3(π(A ◦A))1/2, then AIEP2 is solvable (Hadeler 1968);

(2) if d(λ) > 4π(A), then AIEP1 is solvable (de Oliveira 1970).

The above theorem offers no clue on what will happen when the separation
d(λ) is too small. At the extreme case when two eigenvalues coalesce, we
have the following result.

Theorem 9.9. (Shapiro 1983, Sun and Qiang 1986) Both AIEP1 and
AIEP2 are unsolvable almost everywhere if there are multiple eigenvalues
present in λ.

Up to this point, we have refrained from venturing into discussion on the
class of parametrized problems in order to remain focused on the structured

problems. Nevertheless, as we indicated earlier in Figure 3.1, these problems
overlap each other. We have come across the class of PIEPs many times in
this paper. It is perhaps fitting to at least describe the PIEP and point to
some general results in the context of PIEPs. By a PIEP we mean the IEP
of determined parameters c1, . . . , cℓ so that the matrix

A(c1, . . . , cℓ) = A0 +

ℓ∑

t=1

ctAt, (9.5)

where At, t = 0, . . . , ℓ, are given matrices, have a prescribed spectrum. It
is clear that PEIEPs are a special case of PIEPs by identifying |L| = ℓ and
At = eite

T
jt

, where ek denotes the standard kth coordinate vector in R
n and

(it, jt) is the tth pair of indices in L. Using Brouwer’s fixed-point theorem,
Biegler-König (1981b) derived some sufficient conditions for real solvability
of more general PIEPs.

We conclude this section with a sensitivity result for AIEP2 and remarks
(Xu 1998, Corollary 4.5.5).

Theorem 9.10. (Xu 1998) Suppose D is a solution to AIEP2 with sym-
metric matrix A and eigenvalues {λ1, . . . , λn}. Let the spectral decompos-
ition of A + D be written as A + D = Q(D)Tdiag{λ1, . . . , λn}Q(D), with
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Q(D) = [qij(D)] = [q1, . . . ,qn]. Define

Ω(D) := [q2ji(D)],

b(D) := [q1(D)TAq1(D), . . . ,qn(D)TAqn(D)]T .

Assume that the matrix Ω(D) is nonsingular and that the perturbation

δ = ‖λ− λ̃‖∞ + ‖A− Ã‖2

is sufficiently small. Then the AIEP2 associated with the perturbed data Ã
and λ̃ is solvable. Furthermore, for the perturbed problem there is a solution
D̃ near to D in the sense that

‖D − D̃‖∞
‖D‖∞

≤ κ∞(Ω(D))

(

‖λ− λ̃‖∞ + ‖A− Ã‖2

‖λ− b‖∞

)

+O(δ2),

where κ∞(M) stands for the condition number of the matrix M in the
infinity norm.

Observe that PEIEPs, including AIEP2, generally have multiple solutions.
The above theorem only ensures that, for a given D, there exists in theory

a solution D̃ to the perturbed problem. However, the numerical solution ˜̃D
obtained by a computational method, could be very different from D.

9.4. Cardinality and locations

The prescribed entries in the SHIEP and the STISVP are required to be on
the diagonal. So certain inequalities (Theorems 9.1 and 9.4) involving the
prescribed eigenvalues and entries must be satisfied. The prescribed entries
in an AIEP are required to be on the off-diagonal. Complex solvability was
addressed in Theorem 9.7, but real solvability is only partially understood.
In all these cases, the prescribed entries are located at special positions.

Theorem 9.6 relaxes the specification to arbitrary locations and, under
very mild conditions, asserts the existence of a solution to the PEIEP when
|L| = n. It is natural to ask what is the interplay between cardinality
and locations so that a PEIEP is solvable. To that end, we describe what
is possibly the strongest result on |L| in the class of PEIEPs at arbitrary
locations. The original work was presented in the MSc thesis by Hershkowits
(1978). We restate the result from Hershkowits (1983).

Theorem 9.11. (Hershkowits 1983) Suppose that the field F is algeb-
raically closed and that |L| = 2n− 3. Assume that the following two condi-
tions are met, if they occur:
{

that (9.2) is satisfied, if L ⊇ {(i, i)}ni=1, or

that ai = λj for some j, if L ⊇ {(i, jt)}nt=1 and at = 0 for all jt 6= i.

Then the PEIEP is solvable in F.
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Note that the effect of locations of positions in L is limited to the two
necessary conditions stated in the theorem, and are quite general. The proof
of the Hershkowits theorem was established by induction. In principle, it was
declared in Ikramov and Chugunov (2000) that the construction could be
done by a rational algorithm. The seven basic cases plus the many subcases
of analysis in the 15-page proof might make a computer implementation
quite a challenge. It would be interesting to see if other numerical algorithms
could be developed.

10. Inverse singular value problems

The notion of IEPs can naturally be extended to the inverse singular value
problems (ISVP). An ISVP concerns the construction of a structured matrix
with prescribed singular values. Once again, an ISVP should also satisfy a
certain structural constraint. To our knowledge, the class of ISVPs is an
entirely new territory that has barely been explored in the literature. Adding
to the complication is that the underlying matrix should not be symmetric
(otherwise, it is reduced to an IEP) and could be rectangular. We have
already seen one type of ISVP, that is, the STISVP in Section 9.1, where
a matrix is to be constructed with prescribed diagonal entries and singular
values. Another type of ISVP was mentioned in Section 2.5, where a given
matrix was to be conditioned by a rank-one perturbation. Clearly, every
other type of IEP, except for the symmetric problems, has a counterpart
under the context of ISVP.

One of the reasons that we include ISVPs in the context of SIEPs is that
an ISVP, even without any string of structure, can be converted into an
SIEP. Note that eigenvalues of the structured symmetric matrix

C =

[
0 B
BT 0

]

(10.1)

are precisely the pluses and minuses of singular values of B. The IEP for
C has the fixed structure of zero diagonal blocks plus whatever structure
inherited from B. An ISVP for a structured B is solvable if and only if an
IEP for C with structure defined in (10.1) is solvable. To establish conditions
on the solvability of a structured ISVP should be an interesting question for
further research.

To introduce the notion of ISVPs, we shall limit our discussion to a spe-
cial class of parametrized ISVPs. Given general matrices B0, B1, . . . , Bn ∈
R
m×n, m ≥ n and nonnegative real numbers s1 ≥ · · · ≥ sn, find values of

c := (c1, . . . , cn)T ∈ R
n such that singular values of the matrix

B(c) := B0 +
n∑

i=1

ciBi (10.2)
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are precisely {s1, . . . , sn}. In analogy to the PIEP (9.5), the matrices Bi

can be used to delineate certain quite general structures. We have already
discussed a Newton-type iterative procedure for the ToIEP. We now demon-
strate how the ISVP can be handled in a similar but more subtle way. The
subtlety comes from the fact that, for ISVPs, we have to deal with the left
and the right singular vectors at the same time.

For illustration purposes, assume all prescribed singular values s1, . . . , sn
are positive and distinct. Let Σ ∈ R

m×n denote the ‘diagonal’ matrix with
diagonal elements {s1, . . . , sn}. Define the affine subspace B := {B(c)|c ∈
R
n} and the manifold Ms(Σ) := {UΣV T |U ∈ O(m), V ∈ O(n)} of all

matrices with singular values {s1, . . . , sn}, where O(n) is the set of all or-
thogonal matrices in R

n×n. Solving the ISVP is equivalent to finding an
intersection of the two sets Ms(Σ) and B. Note that any tangent vector
T (X) to Ms(Σ) at X ∈ Ms(Σ) must be of the form

T (X) = XK −HX,

for some skew-symmetric matrices H ∈ R
m×m and K ∈ R

n×n. From any
given X(ν) ∈ Ms(Σ), factorized as

U (ν)TX(ν)V (ν) = Σ

with U (ν) ∈ O(m) and V (ν) ∈ O(n), our goal is twofold. First, we seek for
a B-intercept B(c(ν+1)) from a line that is tangent to the manifold Ms(Σ)
at X(ν). Then we seek for a way to lift the matrix B(c(ν+1)) ∈ B to a point
X(ν+1) ∈ Ms(Σ).

To determine the intercept, we calculate skew-symmetric matrices H(ν) ∈
R
m×m and K(ν) ∈ R

n×n, and a vector c(ν+1) ∈ R
n so that the equation

X(ν) +X(ν)K(ν) −H(ν)X(ν) = B(c(ν+1)) (10.3)

is satisfied. Equivalently, we calculate skew-symmetric matrices H̃(ν) :=

U (ν)TH(ν)U (ν) and K̃(ν) := V (ν)TK(ν)V (ν) for the equation

Σ + ΣK̃(ν) − H̃(ν)Σ = U (ν)TB(c(ν+1))V (ν)

︸ ︷︷ ︸

W (ν)

. (10.4)

The values for c(ν+1), H(ν), and K(ν) can be determined separately.
Observe that, in total, there are m(m− 1)/2 + n(n− 1)/2 + n unknowns

and mn equations involved in (10.4). A closer examination of (10.4) shows
that the lower-right corner of size (m−n)×(m−n) in H̃(ν) can be arbitrary.
For simplicity, we set this part to be identically zero. Then it suffices to
consider the mn equations

W
(ν)
ij = Σij + ΣiiK̃

(ν)
ij − H̃

(ν)
ij Σjj , 1 ≤ i ≤ m, 1 ≤ j ≤ n, (10.5)
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where K̃
(ν)
ij is understood to be zero if i ≥ n+1, for the remaining quantities.

For 1 ≤ i = j ≤ n, we obtain

Ω(ν)c(ν+1) = s − b(ν), (10.6)

where
Ω

(ν)
st := u(ν)

s

T
Btv

(ν)
s , 1 ≤ s, t ≤ n,

s := [s1, . . . , sn]T , and

b(ν)
s := u(ν)

s

T
B0v

(ν)
s , 1 ≤ s ≤ n,

if u
(ν)
s and v

(ν)
s denote column vectors of U (ν) and V (ν), respectively. Under

mild assumptions, the matrix Ω(ν) is nonsingular. The vector c(ν+1) and,
hence, the matrix W (ν) are thus obtained.

The skew-symmetric matrices H(ν) and K(ν) can be obtained by compar-
ing the ‘off-diagonal’ entries in (10.4) without much trouble. For n + 1 ≤
i ≤ m and 1 ≤ j ≤ n, it is clear that

H̃
(ν)
ij = −H̃(ν)

ji = −
W

(ν)
ij

sj
. (10.7)

For 1 ≤ i < j ≤ n,

H̃
(ν)
ij = −H̃(ν)

ji =
siW

(ν)
ji + sjW

(ν)
ij

s2i − s2j
, (10.8)

K̃
(ν)
ij = −K̃(ν)

ji =
siW

(ν)
ij + sjW

(ν)
ji

s2i − s2j
. (10.9)

The intercept is now completely determined.
It only remains to lift the intercept B(c(ν+1) back to Ms(Σ). Towards

that end, one possible way is to define the lift as

X(ν+1) := RTX(ν)S,

where R and S are the Cayley transforms

R :=

(

I +
H(ν)

2

)(

I − H(ν)

2

)−1

,

S :=

(

I +
K(ν)

2

)(

I − K(ν)

2

)−1

.

This completes one cycle of the Newton step and the iteration repeats until
convergence. Regarding the efficiency of this algorithm, Chu (1992) proved
the following result on the rate of convergence.

Theorem 10.1. Suppose that the ISVP (10.2) has an exact solution at c∗

and that B(c∗) = ÛΣV̂ T is the corresponding singular value decomposition.
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Define the error matrix E := (E1, E2) := (U − Û , V − V̂ ), and suppose that
the matrix Ω(ν) is nonsingular. Then ‖E(ν+1)‖ = O(‖E(ν)‖2)

We conclude this section with one important remark concerning the case
of multiple singular values. Similar remarks might be applicable to IEPs
with prescribed multiple eigenvalues as well. It is known that multiple ei-
genvalues are difficult to compute even in direct problems. Recall earlier in
Theorem 9.9 that AIEP1 and AIEP2 are unsolvable almost everywhere in
the presence of multiple eigenvalues. Thus, a general rule of thumb is that
the ISVP (IEP) may not have a solution if there are repeated singular val-
ues (eigenvalues) in the prescribed set. At least, the proximity of multiple
spectral data would impose considerable difficulty to the inverse problem.
An argument was given in Chu (1992) showing that only a portion of the
total set of singular values of B(c) should be specified to give leeway to
accommodate the multiplicity.

11. Inverse singular/eigenvalue problems

The structure involved in SIEPs can be quite general. Thus far, we have
seen structures including Jacobi, Toeplitz, nonnegative, stochastic, unitary
Hessenberg, prescribed entries, and the special form (10.1). Most of these
structural constraints are explicitly or, at least, semi-explicitly, given in
terms of the appearance of the underlying matrix. It is possible that the
structure is described implicitly as the solution set of some nonlinear func-
tions. In this section, we discuss one particular class of SIEPs where the
‘structure’ is implicitly characterized by the singular values.

Recall that the Schur–Horn theorem identifies the connection between
diagonal entries and eigenvalues of a Hermitian matrix. The Mirsky theorem
gives the connection between diagonal entries and eigenvalues of a general
matrix. The Sing–Thompson theorem characterizes the connection between
diagonal entries and singular values of a general matrix. It is natural to ask
about the connection between singular values and eigenvalues of a matrix.
For Hermitian matrices, the singular values are simply the absolute values of
eigenvalues. But for general square matrices, the connection is much more
involved, as is given by the Weyl–Horn theorem.

Theorem 11.1. (Weyl 1949, Horn 1954b) Given vectors λ ∈ C
n and

s ∈ R
n, suppose the entries are arranged in the ordering that |λ1| ≥ · · · ≥

|λn| and s1 ≥ · · · ≥ sn. Then a matrix with eigenvalues λ1, . . . , λn and
singular values s1, . . . , sn exists if and only if

{∏k
j=1 |λj | ≤∏k

j=1 sj , k = 1, . . . , n− 1,
∏n

j=1 |λj | =
∏n

j=1 sj .
(11.1)
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If |λn| > 0, then the Weyl–Horn condition is equivalent to the statement
that the vector log(s) majorizes the vector log |λ|. The IEP we are concerned
with is to construct a matrix with prescribed singular values and eigenvalues
(ISEP), if the Weyl–Horn condition is met. The original proof was by
induction, but Chu (2000) modified the proof to avoid triangularization and
derived a divide-and-conquer recursive algorithm, which we outline below.

First, observe that the 2 × 2 triangular matrix

A =

[
λ1 µ
0 λ2

]

has singular value {s1, s2} if and only if

µ =
√

s21 + s22 − |λ1|2 − |λ2|2.

The fact that µ is well defined follows from the Weyl–Horn condition that
|λ1| ≤ s1 and |λ1| |λ2| = s1s2. It is interesting to note that µ2 is precisely
the so-called departure of A from normality. For the sake of better compu-
tational stability, we suggest replacing µ by the definition

µ =

{

0, if |(s1 − s2)
2 − (|λ1| − |λ2|)2| ≤ ǫ,

√

|(s1 − s2)2 − (|λ1| − |λ2|)2|, otherwise.

The 2 × 2 matrix serves as the building block in the recursion.
The basic ideas in Weyl–Horn’s proof contain three major components:

• the original problem can be reduced to two problems of smaller sizes,

• problems of smaller sizes are guaranteed to be solvable by the induction
hypothesis, and

• the subproblems can be affixed together by working on a suitable 2× 2
corner that has an explicit solution.

If we repeatedly apply these principles, then the original inverse problem
is divided into subproblems of size 2 × 2 or 1 × 1 that can eventually be
conquered to build up the original size.

The original idea on how the problems could be divided is quite intriguing.
Since this is an entirely new approach different from either the iterative
methods or the continuous methods we have discussed thus far for other
types of IEPs, we outline the proof as follows. For simplicity, we assume
that si > 0 for all i = 1, . . . , n. It follows that λi 6= 0 for all i. The case of
zero singular values can be handled in a similar way. Starting with γ1 := s1,
define the sequence

γi := γi−1
si
|λi|

, i = 2, . . . , n− 1. (11.2)
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Assume that the maximum γ := min1≤i≤n−1 γi is attained at the index j.
Define

θ :=
|λ1λn|
γ

. (11.3)

Then the following three sets of inequalities are valid:
{
|λ1| ≥ |λn|,
γ ≥ θ;

(11.4)

{
γ ≥ |λ2| ≥ · · · ≥ |λj |,
s1 ≥ s2 ≥ · · · ≥ sj ;

(11.5)

{
|λj+1| ≥ · · · ≥ |λn−1| ≥ θ,
sj+1 ≥ · · · ≥ sn−1 ≥ sn.

(11.6)

More importantly, the numbers in each of the above sets satisfy the Weyl–
Horn condition, respectively, with the first row playing the role of eigenvalues
and the second row playing the singular values. Since these are problems of
smaller sizes, by induction hypothesis, the ISEPs associated with (11.5) and
(11.6) are solvable. In particular, there exist unitary matrices U1, V1 ∈ C

j×j

and triangular matrices A1 such that

U1








s1 0 · · · 0
0 s2 0
...

. . .

0 0 · · · sj







V ∗

1 = A1 =










γ × × · · · ×
0 λ2 ×

...
. . .

0 0 λj










,

and unitary matrices U2, V2 ∈ C
(n−j)×(n−j), and triangular matrix A2 such

that

U2








sj+1 0 · · · 0
0 sj+2 0
...

. . .

0 0 · · · sn







V ∗

2 = A2 =










λj+1 × · · · × ×
0 λj+2 ×
...

. . .
...

λn−1 ×
0 0 · · · 0 θ










.

Note the positions of γ and θ in the matrices. If we augment A1 and A2 to
[
A1 ©
© A2

]

, (11.7)

then γ and θ reside, respectively, at the (1, 1) and the (n, n) positions. In
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his original proof, Horn claimed that the block matrix could be permuted to
the triangular matrix





















λ2 × · · · × ×
0 ×
...

. . .
... ©

λj ×
0 · · · 0 γ 0
0 0 · · · 0 0 θ × × · · · ×

λj+1 ×
©

...
. . .

· · · 0 0 λn−1





















.

but this is not quite correct. If it were true, it is obvious that the resulting
matrix would have singular values {s1, . . . , sn} and miss only the eigenvalues
{λ1, λn}. The next step is to glue the 2×2 corner adjacent to the two blocks
together by an equivalence transformation

U0

[
γ 0
0 θ

]

V ∗
0 = A0 =

[
λ1 µ
0 λn

]

that does not affect the eigenvalues {λ2, . . . , λn−1}.
In Horn’s proof, the ordering of diagonal entries is important and the res-

ulting matrix is upper-triangular. While the final result in the Schur–Horn
theorem remains true, it is unfortunate that it takes more than permuta-
tions to rearrange the diagonals of a triangular matrix while maintaining
the singular values. Such a rearrangement is needed at every conquering
step, but it requires new Schur decompositions and is expensive to compute
in general.

It was proved in Chu (2000) that the triangular structure was entirely
unnecessary, as was the rearrangement of the diagonal entries. It can be
shown that modifying the first and the last rows and columns of the block
diagonal matrix in (11.7) is sufficient to solve the ISEP, and that the res-
ulting matrix is permutation similar to a triangular matrix. This advance
in understanding makes it possible to implement the induction proof as a
numerical algorithm.

More precisely, denote the 2 × 2 orthogonal matrices by U0 = [u
(0)
st ] and

V0 = [v
(0)
st ]. Then the matrix

A =






u
(0)
11 0 u

(0)
12

0 In−1 0

u
(0)
21 0 u

(0)
22






[
A1 ©
© A2

]






v
(0)
11 0 v

(0)
12

0 In−1 0

v
(0)
21 0 v

(0)
22






∗
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has eigenvalues {λ1, . . . , λn} and singular values {s1, . . . , sn}. The resulting
matrix A has the structure

A =




















λ1 ⊗ · · · ⊗ ⊗ ∗ ∗ µ
⊗ λ2 × 0 0 ∗
...

. . .
... ©

λj−1 ×
⊗ × · · · × λj ∗
∗ 0 · · · 0 0 λj+1 × × · · · ⊗
∗ 0 × λj+2 ⊗

©
...

. . .

0 ∗ · · · ∗ ∗ ⊗ ⊗ λn




















,

where × stands for unchanged, original entries from A1 or A2, ⊗ stands
for entries of A1 or A2 that are modified by scalar multiplications, and ∗
denotes possible new entries that were originally zero. This pattern repeats
itself during the recursion. Note that diagonal entries of A1 and A2 are in
the fixed orders γ, λ2, . . . , λj and λj+1, . . . , λn−1, θ, respectively. Each Ai is
similar via permutations, which need not be known, to a lower-triangular
matrix whose diagonal entries constitute the same set as the diagonal entries
of Ai. Thus the eigenvalues of each Ai are precisely its diagonal entries. The
first row and the last row have the same zero pattern except that the lower-
left corner is always zero. The first column and the last column have the
same zero pattern except that the lower-left corner is always zero. Using
graph theory, it can be shown that the affixed matrix A has exactly the
same properties.

With this realization, the entire induction process can easily be imple-
mented in any programming language that allows a routine to call itself
recursively. The main feature in the routine should be a single divide-and-
conquer mechanism as we just described. As the routine is calling itself
recursively, the problem is ‘divided down’ and ‘conquered up’ accordingly.
A sample MATLAB program can be found in Chu (2000).

We illustrate how the divide-and-conquer algorithm works by a 6 × 6
symbolic example. In the following, the integers jℓ, selected randomly only
for demonstration, indicate where the problem should be divided.

The dividing process, along with the corresponding eigenvalues and sin-
gular values for each subproblems, is depicted in the boxed frames in Fig-
ure 11.1. A blank framed box indicates that the division has reached the
bottom. In this example, the original 6×6 problem is divided into two 1×1
problems and two 2×2 problems. Each of these small problems can trivially
be solved. The pair of numbers beside jℓ and in between rows of framed
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{
λ1 λ2 λ3 λ4 λ5 λ6

s1 s2 s3 s4 s5 s6

j1 = 5 ⇓
{
λ1 λ6

γ1 θ1

{
γ1 λ2 λ3 λ4 λ5

s1 s2 s3 s4 s5

{
θ1
s6

j2 = 2 ⇓
{
γ1 λ5

γ2 θ2

{
γ2 λ2

s1 s2

{
λ3 λ4 θ2
s3 s4 s5

j3 = 1 ⇓
{
λ3 θ2
γ3 θ3

{
γ3

s3

{
λ4 θ3
s4 s5

Figure 11.1. An illustration of the dividing process

boxes are the eigenvalues and singular values for the 2 × 2 matrix used to
fasten the smaller matrices together in the conquering process.

The conquering process using the small matrices to build larger matrices
is depicted in Figure 11.2. The matrices beside jℓ, and in between rows of
framed boxes, are the augmented matrices (11.7) with the wrong eigenvalues.
After fixing by some appropriated 2 × 2 matrices, we see in Figure 11.2
that some rows and columns must be modified. The symbols ×,⊗ and ∗,
indicating how the values have been changed during the conquering process,
have the same meaning as defined before. The final 6 × 6 matrix with the
desirable eigenvalues and singular values has the structure indicated at the
top of Figure 11.2.

It is perhaps true that eigenvalues and singular values are two of the most
important characteristics of a matrix. Being able to construct a solution
for the ISEP might help to create test matrices for numerical linear algebra
algorithms.

We should point out promptly that the constructed matrix obtained by the
algorithm above is usually complex-valued, if there are complex eigenvalues.
It might be desirable to construct a real-valued solution, if all eigenvalues are
complete in conjugation. Towards that end, very recently Li and Mathias
(2001) extended the Weyl–Horn condition to the case when only m(≤ n)
eigenvalues are given. They also proposed a stable algorithm using diagonal
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λ1 ⊗ 0 0 ⊗ ∗
0 λ2 0 0 0 0
⊗ 0 λ3 0 × ∗
⊗ 0 × λ4 × ∗
0 × 0 0 λ5 0
0 ∗ 0 0 ∗ λ6











j1 = 5 ⇑











γ1 × 0 0 × 0
0 λ2 0 0 0 0
× 0 λ3 0 × 0
× 0 × λ4 × 0
0 × 0 0 λ5 0
0 0 0 0 0 θ1



















γ1 ⊗ 0 0 ∗
0 λ2 0 0 0
∗ 0 λ3 0 ⊗
∗ 0 × λ4 ⊗
0 ∗ 0 0 λ5









[
θ1
]

j2 = 2 ⇑









γ2 × 0 0 0
0 λ2 0 0 0
0 0 λ3 0 ×
0 0 × λ4 ×
0 0 0 0 θ2









[
γ2 ∗
0 λ2

]




λ3 0 ∗
∗ λ4 ⊗
0 0 θ2





j3 = 1 ⇑





γ3 0 0
0 λ4 ×
0 0 θ3





[
γ3

]
[
λ4 ∗
0 θ3

]

Figure 11.2. An illustration of the conquering process

unitary matrices, permutations, and rotation matrices to construct a real
matrix if the specified eigenvalues are closed in complex conjugation. Finally,
we remark that the divide-and-conquer feature enables fast computation.
Numerical experiments seem to suggest that the overall cost in solving an
n-dimensional ISEP is roughly O(n2).
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12. Conclusion

We believe that inverse eigenvalue problems should always be structured
problems. In this article, we try to explain, motivate, and review only
a small segment of the full scope of structured inverse eigenvalue prob-
lems. The structures we selected for study in this presentation are by
no means emblematic, but rather reflect our personal preferences. The
notions introduced in this paper are by no means conclusive, but rather
divulge our limited understanding of this subject. We have collected an
extensive bibliography of more than 400 papers on this topic (available at
http://www4.ncsu.edu/~mtchu). Even with that, the list is far from be-
ing comprehensive as we have already overlooked much of the engineering
literature. Furthermore, be aware that our consideration has been limited
to the setting when the entire spectrum is known and that the structural
constraint must be satisfied. We have not discussed the structured problems
where only partial eigenvalues and eigenvectors are given. Neither have we
examined the case where a least squares solution with approximate spectrum
or approximate structure is sufficient for practical purposes.

We hope to have accomplished three goals in this presentation. First, we
wanted to demonstrate the breadth of areas where inverse eigenvalue prob-
lems can arise. The discipline ranges from practical engineering applications
to abstract algebraic theorization. Secondly, we wanted to corroborate the
depth of intricacy of inverse eigenvalue problems. While the set-up of an
inverse eigenvalue problem seems relatively easy, the solution is not straight-
forward. The instruments employed to solve such a problem are quite soph-
isticated, including techniques from orthogonal polynomials, degree theory,
optimization, to differential geometry and so on. Finally and most import-
antly, we wanted to arouse interest and encourage further research into this
topic. We have indicated throughout the text that there is much room for
further study of the numerical development and theoretical understanding
of these fascinating inverse problems.
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